ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

2
Issue
vol 67 / February, 2024
Article

DOI 10.17586/0021-3454-2017-60-7-654-659

UDC 535:631.373.826

POTENTIAL ACCURACY OF SLANT RANGE MEASUREMENT WITH THE INERTIAL INPUT CIRCUIT OF RECEIVING SYSTEM

V. D. Le
ITMO University, Department of OpticalElectronic Devices and Systems; Post-Graduate Student


E. G. Lebedko
ITMO University, Saint Petersburg, 197101, Russian Federation; Professor


H. T. Nguyen
ITMO University, Saint Petersburg, 197101, Russian Federation; postgraduate


L. Liu
ITMO University, Department of Optical-Electronic Devices and Systems; Post-Graduate Student


Read the full article 

Abstract. Potential accuracy of slant range measurement for ground objects at the complex structure of the underlying surface is estimated with the account for inertial receiver and the amplifier circuit noise. Effectiveness of the receiver-amplifier path bandwidth expansion is analyzed as a mean to avoid superposition of signals from a local object with returns from the underlying surface. An estimate of energy loss and an accuracy assessment are presented.
Keywords: estimate of time delay variance, slant range, nonstationary illumination, sounding signal, inertial circuit input, delay time

References:
  1. Jinliang Yang, Xingshu Wang, Yang Gao. Intern. Conf. on Optical Instruments and Technology: Optoelectronic Measurement Technology and Systems: Proc. of SPIE, 2013, no. 9046, рp. 90461D. DOI: 10.1117/12.2038131.
  2. Koshelev A.V., Lesnykh I.V., Seredovich V.A., Sinjakin A.K., Karpik A.P.Intern. Symp. on Laser Metrology Applied to Science, Industry, and Everyday Life: Proc. of SPIE, 2002, no. 4900.
  3. Fu Rongguo, Sa Chula, Li Mengxi, Guo Yiliang, Cheng Yu, Chang Benkang. Solid State Lasers XX: Technology and Devices: Proc. of SPIE, 2011, no. 7912, рp. 79121Z DOI: 10.1117/12.873565.
  4. Stratan A., Zorila A., Rusen L., Nemes G. Opt. Engineering,2014, no. 12(53), рp. 122513.
  5. Wang Zhen, Lv Xin-yuan, Mao Jin-jin, Liu Wei, Yang Dong.Intern. Symp. on Photoelectronic Detection and Imaging; Laser Sensing and Imaging and Applications: Proc. of SPIE, 2013, no. 8905. DOI: 10.1117/12.2033725.
  6. Ruiqiang Chen, Yuesong Jiang. Intern. Symp. on Optoelectronic Technology and Application, Laser and Optical Measurement Technology and Fiber Optic Sensors: Proc. of SPIE, 2014, no. 9297. DOI: 10.1117/12.2068379.
  7. Munteanu I., Mic1o S. Advanced Topics in Optoelectronics, Microelectronics, and Nanotechnologies, Proc. of SPIE, 2003, no. 5227, рp. 452–455.
  8. Amann M.-C., Bosch T., Lescure M., Myllyla R., Rioux M. Opt. Engineering. 2001, no. 1(40), рp. 10–18.
  9. Jutzi B., Eberle B., Stilla U. Image and Signal Processing for Remote Sensing VIII: Proc. of SPIE, 2003, no. 4885.
  10. Le V.D., Lebed'ko E.G. Journal of Instrument Engineering, 2016, no. 7(59), рp. 571–577.
  11. Le V.D. Sb. dokl. V kongressa molodykh uchenykh (Proc. of V Young Scientists Congress), 2016, no. 1, pp. 296–297. (in Russ.)
  12. Lebed'ko E.G., Porfir'ev L.F., Khaytun F.I. Teoriya i raschet impul'snykh i tsifrovykh optiko-elektronnykh sistem (Theory and Calculation of Pulse and Digital Optical-Electronic Systems), Leningrad, 1984, 192 р. (in Russ.)
  13. Fal'kovich S.E. Otsenka parametrov signalov (Estimation of Parameters of Signals), Moscow 1970. 334 р. (in Russ.)
  14. Lebed'ko E.G. Sistemy impul'snoy opticheskoy lokatsii (Pulsed Optical Locating System), St. Petersburg, 2014, 368 p. (in Russ.)
  15. Lebed'ko E.G. Otsenka parametrov signalov v optiko-elektronnykh priborakh (Estimation of Parameters of Signals in Opto-Electronic Devices), St. Petersburg, 2001, 39 p. (in Russ.)
  16. Abramowitz M. and Stegun I.A., ed., Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, National Bureau of Standards, 1972, 1060 p.