ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

2
Issue
vol 67 / February, 2024
Article

DOI 10.17586/0021-3454-2018-61-4-323-335

UDC 681.518.5:004.052.32

WEIGHTED CODE WITH SUMMATION WITHOUT CARRIES FOR SOLVING THE PROBLEMS OF TECHNICAL DIAGNOSTICS OF DISCRETE SYSTEMS

V. V. Sapozhnikov
PSTU; Professor, Department of Automation and Telemechanics on the Railways


V. V. Sapozhnikov
PSTU; Professor, Department of Automation and Telemechanics on the Railways


D. V. Ephanov
PSTU; Department of Automation and Telemechanics on the Railways


Read the full article 

Abstract. Characteristics of weight-based code with summation without the operation of carries to the detection of errors in self-checking circuits of built-in test of logical devices of automation and computer tech-nique are analyzed. It is shown that in the case when the described code uses a sequence of weight coefficients forming a natural series of numbers, it ensures detecting of any single and double errors in data vectors. For this indicator, the proposed code is comparable to the classic Hamming codes but has more simple functions describing check bits. For some values of data bits number, the new code has the number of check digits one less than the classic one. This makes it possible to organize self-checking circuits of built-in control for logical devices with reduced structural redundancy in comparison with both duplication and using Hamming code for these purposes. The characteristics of error detection by types (unidirectional, symmetrical or asymmetrical) and multiplicities are better for a Hamming code identifying more errors at the logical device output than with the use of the proposed weighted code. Experiments carried out with the systems of benchmarks LGSynth`89 and MCNC Benchmarks confirm the theoretically obtained patterns. 
Keywords: technical diagnostics, self-checking built-in check circuit, fault detection, data vector, error, Hamming code, weighted code with summation without carries, benchmark, structural redundancy

References:
  1. McCluskey E.J. Logic Design Principles: With Emphasis on Testable Semicustom Circuits, New Jersey, Prentice Hall PTR, 1986, 549 p.
  2. Rao T.R., Fujiwara E. Error Control Coding for Computer Systems, NY, Prentice Hall, 1989, 584 p.
  3. Pradhan D.K. Fault-Tolerant Computer System Design, NY, Prentice Hall, 1996, 560 p.
  4. Abramovici M., Breuer M.A., Friedman A.D. Digital System Testing and Testable Design, Computer Science Press, 1998, 652 p.
  5. Fujiwara E. Code Design for Dependable Systems: Theory and Practical Applications, New Jersey, John Wiley & Sons, 2006, 720 p.
  6. Parkhomenko P.P., Sogomonyan E.S. Osnovy tekhnicheskoy diagnostiki. Optimizatsiya algoritmov diagnostirovaniya, apparaturnye sredstva (Basics of Technical Diagnostics. Optimization of Algorithms of Diagnosing, Hardware Means), Moscow, 1981, 320 р. (in Russ.)
  7. Sogomonyan E.S., Slabakov E.V. Samoproveryaemye ustroystva i otkazoustoychivye sistemy (The Self-Checked Devices and Failure-Safe Systems), Moscow, 1989, 208 р. (in Russ.)
  8. Sapozhnikov V.V., Sapozhnikov Vl.V. Samoproveryaemye diskretnye ustroystva (The Self-Checked Discrete Devices), St. Petersburg, 1992, 224 p. (in Russ.)
  9. Piestrak S.J. Design of Self-Testing Checkers for Unidirectional Error Detecting Codes, Wrocław, Oficyna Wydawnicza Politechniki Wrocłavskiej, 1995, 111 p.
  10. Gavzov D.V., Sapozhnikov V.V., Sapozhnikov Vl.V. Automation and Remote Control, 1994, no. 8, pp. 3–50. (in Russ.)
  11. Drozd A.V., Kharchenko V.S., Antoshchuk S.G., Drozd Yu.V., Drozd M.A., Sulima Yu.Yu. Rabochee diagnostirovanie bezopasnykh informatsionno-upravlyayushchikh sistem (Working Diagnosing of Safe Management Information Systems), Khar'kov, 2012, 614 p. (in Russ.)
  12. Kharchenko V., Kondratenko Yu., Kacprzyk J. Green IT Engineering: Concepts, Models, Complex Systems Architectures, Springer Book series "Studies in Systems, Decision and Control", 2017, Vol. 74, 305 p. DOI: 10.1007/978-3-319-44162-7.
  13. Nicolaidis M., Zorian Y. Journal of Electronic Testing: Theory and Application, 1998, no. 1-2(12), pp. 7–20. DOI: 10.1023/A:1008244815697.
  14. Zeng C., McCluskey E.J. International Test Conference, Atlantic City, NJ, 1999, pp. 672–679. DOI: 10.1109/TEST.1999.805795.
  15. Mitra S., McCluskey E.J. Proceedings of International Test Conference, 2000, USA, Atlantic City, NJ, 03–05 October 2000, pp. 985–994. DOI: 10.1109/TEST.2000.894311.
  16. Das D., Touba N.A. Proceedings of 17th IEEE Test Symposium, USA, California, 1999, pp. 370–376.
  17. Efanov D.V., Sapozhnikov V.V., Sapozhnikov Vl.V. Automation and Remote Control, 2017, no. 5, pp. 152–165. (in Russ.)
  18. Sapozhnikov V.V., Sapozhnikov Vl.V., Efanov D.V. Electronic Modeling, 2014, no. 1(36), pp. 59–80. (in Russ.)
  19. Huches J.L.A., McCluskey E.J., Lu D.J. IEEE Transactions on Computers, 1984, no. 6(C-33), pp. 546–550.
  20. Morosow A., Sapozhnikov V.V., Sapozhnikov Vl.V., Goessel M. VLSI Design, 1998, no. 4(5), pp. 333–345. DOI: 10.1155/1998/20389.
  21. Hamming R.W. Bell System Technical Journal, 1950, no. 2(29), pp. 147–160.
  22. Efanov D.V. Information Science and Control Systems, 2011, no. 3, pp. 70–79. (in Russ.)
  23. Efanov D.V., Blyudov A.A. Information Science and Control Systems, 2012, no. 2, pp. 100–111. (in Russ.)
  24. Sapozhnikov V., Sapozhnikov Vl., Efanov D., Blyudov A. Proceedings of 11th IEEE East-West Design & Test Symposium (EWDTS`2013), Rostov-on-Don, Russia, September 27–30, 2013, pp. 200–207. DOI: 10.1109/EWDTS.2013.6673097.
  25. Sapozhnikov V.V., Sapozhnikov Vl.V., Efanov D.V. Automation on transport, 2015, no. 3(1), pp. 311–337. (in Russ.)
  26. Sapozhnikov V.V., Sapozhnikov Vl.V., Efanov D.V. Journal of Instrument Engineering, 2018, no. 1(61), pp. 47–59. (in Russ.)
  27. Sapozhnikov V., Sapozhnikov Vl., Efanov D., Dmitriev V. Proceedings of 14th IEEE East-West Design & Test Symposium (EWDTS`2016), Yerevan, Armenia, October 14–17, 2016, pp. 134–141. DOI: 10.1109/EWDTS.2016.7807686.
  28. Sapozhnikov Val.V., Sapozhnikov Vl.V., Efanov D.V., Dmitriev V.V. Automation on transport, 2017, no. 3(3), pp. 414–433. (in Russ.)
  29. Berger J.M. Information and Control, 1961, no. 1(4), pp. 68–73. DOI:10.1016/S0019-9958(61)80037-5.
  30. Blyudov A.A., Efanov D.V., Sapozhnikov V.V., Sapozhnikov Vl.V. Electronic Modeling, 2012, no. 6(34), рр. 17–29. (in Russ.)
  31. Sapozhnikov V.V., Sapozhnikov Vl.V., Efanov D.V. Journal of Instrument Engineering, 2015, no. 5(58), pp. 333–343. DOI: 10.17586/0021-3454-2015-58-5-333-343. (in Russ.)
  32. Collection of Digital Design Benchmarks, http://ddd.fit.cvut.cz/prj/Benchmarks/.
  33. Sentovich E.M., Singh K.J., Lavagno L., Moon C., Murgai R., Saldanha A., Savoj H., Stephan P.R., Brayton R.K., Sangiovanni-Vincentelli A. SIS: A System for Sequential Circuit Synthesis, Electronics Research Laboratory, Department of Electrical Engineering and Computer Science, University of California, Berkeley, 4 May 1992, 45 p.