ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

2
Issue
vol 67 / February, 2024
Article

DOI 10.17586/0021-3454-2018-61-9-761-770

UDC 681.785.55

THE OPTIMAL CHOICE OF MULTIELEMENT PHOTODETECTOR WHEN DESIGNING SPECTRORADIOMETER FOR MEASUREMENT OF PHOTOSYNTHETIC ACTIVE RADIATION

S. S. Baev
ITMO University, Department of Optical-Electronic Devices and Systems; TKA Scientific Instruments; Post-Graduate Student, Engineer


V. V. Korotaev
ITMO University, Saint-Petersburg, 197101, Russian Federation; Full Professor


V. N. Kuzmin
TKA Scientific Instruments, Department of Optics and Photometry; Professor, Deputy Director for Optics and Photometry


K. A. Tomsky
TKA Scientific Instruments; Professor, Director General


Read the full article 

Abstract. The problems of developing a spectroradiometer to be included into a system of automated control over devices for irradiating plants grown under conditions of a closed ground are discussed. The spectro-radiometer is designed to provide the optimal irradiation regime for plants and must be accurate enough and have low cost. The error of the spectroradiometer due to the discrete nature of the multielement photodetector and the ratio of the half-width of the monochromatic image of the spectroradiometer slit to the distance between the detector elements is considered. The results of an experiment performed with commercially available multielement optical detectors with different size of sensitive elements for various widths of monochromatic image of the polychromator input slit are presented.  
Keywords: optical-electronic system, polychromator, multielement photodetector, non-excluded error

References:
1. CIE Publication 106/7: Terminology for Photosynthetically Active Radiation for Plants, 1993.
2. ANSI/ASABE S640. Quantities and Units of Electromagnetic Radiation for Plants (Photosynthetic Organisms), American Society of Agricultural and Biological Engineers, 2017.
3. Aitkenhead M., Gaskin G., Lafouge N., Hawes C. Sensors, 2017, no. 1(17). DOI: 10.3390/s17010099.
4. Hutengs C., Ludwig B., Jung A., Eisele A., Vohland M. Sensors, 2018, no. 4(18). DOI: 10.3390/s18040993.
5. Pirson A., Zimmermann M. Encyclopedia of Plant Physiology. Physiological Plant Ecology I. Responses to the Physical Environment, Springer, 1981, 630 p.
6. Ayzenberg Yu.B. Spravochnaya kniga po svetotekhnike (Reference Book on Lighting Engineering), Moscow, 2006, 972 р. (in Russ.)
7. Taiz L., Zeiger E. Plant physiology, Sunderland, Sinauer Associates Inc. Publ., 2006, 705 p.
8. Alekhina N.D., Balnokin Yu.V., Gavrilenko V.F. et al. Fiziologiya rasteniy (Plant Physiology), Moscow, 2005, 640 р. (in Russ.)
9. Gueymard C. Energy, 2005, no. 30, pp. 1551–1576. DOI: 10.1016/j.energy.2004.04.032.
10. Randall W., Lopez R. Hortscience, 2014, no. 5(49), pp. 589–595.
11. Tkachenko N. Optical Spectroscopy. Methods and Instrumentations, London, Elsevier Science, 2006.
12. Pajares G. Sensors, 2011, no. 9(11), pp. 8930–8932. DOI: 10.3390/s110908930
13. Peysakhson I.V. Optika spektral’nykh priborov (Optics of Spectral Devices), Leningrad, 1975, 312 р. (in Russ.)
14. Tarasov K.I. Spektral’nyye pribory (Spectral Device), Leningrad, 1968, 388 р. (in Russ.)
15. Pacheco-Labrador J., Martín M.P. Sensors, 2015, no. 15, pp. 4154–4175. DOI: 10.3390/s150204154. 
16. Pacheco-Labrador J., Ferrero A., Martín M.P. Appl. Optics, 2014, no. 32(53), pp. 7778–7786. DOI: 10.1364/AO.53.007778.
17. Wang X.R., Zhang J.Q., Feng Z.X., Chang H.H. Appl. Optics, 2005, no. 21(44). DOI: 10.1364/AO.44.004470.
18. Scheeline A. Appl. Spectroscopy, 2017, no. 10(71), pp. 2237–2252. DOI: 10.1177/0003702817720468.
19. Tarasov V.V., Yakushenkov Yu.G. Dvukh- i mnogodiapazonnyye optiko-elektronnyye sistemy s matrichnymi priyemnika izlucheniya (Two-and Multi-Band Optoelectronic Systems with Matrix Radiation Receivers), Moscow, 2007, 192 р. (in Russ.)
20. Namioka T. J. Optical Society Amer., 1959, no. 5(49).
21. Loewen E. Diffraction grating handbook, NY, Newport Corporation, 2005.
22. Namioka T. J. Optical Society Amer., 1959, no. 10(49).
23. Katayama T., Takahashi A. Japanese Journal of Appl. Physics, 1970, no. 12(9).
24. AMS TSL1401CL CMOS Linear Sensor Array, General Description, http://ams.com/eng/content/download/250163/975677/142515.
25. Hamamatsu S9226-04 CMOS linear image sensor, General Description, http://www.hamamatsu.com/resources/pdf/ssd/s9226_series_kmpd1121e.pdf.
26. Monokhromator MDR-23. Tekhnicheskoye opisaniye i instruktsiya po ekspluatatsii (Monochromator MDR-23. Technical Description and Operating Instructions), Leningrad, 1989. (in Russ.)