ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

2
Issue
vol 67 / February, 2024
Article

DOI 10.17586/0021-3454-2020-63-2-133-142

UDC 621.373.8, 519.718

RELIABILITY OF ADAPTIVE OPTICAL SYSTEM ELEMENTS FOR HIGH-POWER PULSED LASER INSTALLATIONS

A. V. Chernykh
Russian Federal Nuclear Center All-Russian Research Institute of Experimental Physics;


Y. I. Shanin
LUCH Research and Production Association, Research and Development Institute;


Read the full article 

Abstract. An adaptive optical system (AOS) intended for use in high-power pulsed laser installations of iner-tial thermonuclear fusion, is designed to provide the required spatial characteristics of the laser beam wavefront. The composition of the AOS includes: a deformable mirror (DM), a wave front sensor, an am-plifying unit, a computer for calculations and control. Increased requirements for the reliability of laser system components are dictated by the high cost of ownership. The least reliable components of the sys-tem are drives actuators (included in the DM), since they are subject to cyclic variable electromechanical loads. Technical solutions of AOS and the arising requirements to the system reliability are analyzed. The two most critical failures of the system are indicated; they are degradation of the optical properties of the coatings of the optical surface of the deformable mirror, and the loss of compensation possibilities. As dependability indicators for the elements of a system, the mean operating time to failure is proposed. Reliability of AOS as a whole may be characterized by an integrated reliability ratio, indicators of durabil-ity and persistence. Issues related to the reliability of AOS elements are considered. A block diagram of the AOS module is presented and an integrated reliability ratio - the effectiveness persistence coefficient - is evaluated. Reliability of the developed AOS is confirmed by tests of separate elements of the system. The created AOS elements are reported to meet requirements imposed to them.
Keywords: adaptive optical system, deformable mirror, automatic control system, high-power pulsed laser installation, wavefront sensor, piezoelectric drive, actuator, amplifying unit, reliability, effectiveness persistence coefficient

References:
  1. Zacharias R., Bliss E., Feldman M. et al. The National Ignition Facility (NIF) Wavefront Control System. Proc. SPIE, 1999. Vol. 3492. P. 678—692. https://doi.org/10.1117/12.354181.
  2. Grosset-Grange C., Barnier J.-N., Chappuis C., Cortey H. Design principle and first results obtained on the LMJ deformable mirror prototype// Proc. SPIE 6584, Adaptive Optics for Laser Systems and Other Applications, 658403. 2007. P. 1—16. https://doi.org/10.1117/12.725789.
  3. Шанин О. И. Адаптивные оптические системы в импульсных мощных лазерных установках. М.: Техносфера, 2012. 200 с.
  4. Zacharias R. A., Beer N. R., Bliss E. S. et al. Alignment and wavefront control systems of the National Ignition Facility // Opt. Eng. 2004. Vol. 43, N 12. P. 2873—2884. https://doi.org/10.1117/1.1815331.
  5. адежность технических систем. Справочник / Под ред. И. А. Ушакова. М.: Радио и связь, 1985. 608 с.
  6. Spaeth M. L., Manes K. R., Widmayer C. C. et al. National Ignition Facility wavefront requirements and optical architecture // Opt. Eng. 2004. Vol. 42, N 12. P. 2854—2865. https://doi.org/10.1117/1.1815332.
  7. Сафронов А., Климашин В., Парфенов Б., Ярошевич В., Никифоров В. Пьезокерамические пакетные и моноблочные актюаторы // Компоненты и технологии. 2002. № 6. С. 26—28.
  8. MV1-D1312(I) Gigabit Ethernet Series CMOS Area Scan Camera/User Manual/ MAN044 12/2009 V2.1. 83 p.
  9. Aldrich R. E. Deformable mirror wavefront correctors // Adaptive optics engineering handbook. NY: Marsel Dekker, 2000. P. 151—197.
  10. Sechaud M. Wave-front compensation devices // Adaptive Optics in Astronomy / Ed. F. Roddier. Cambridge: University Press, 1999. Р. 57—90.
  11. Никифоров В. Г. Многослойные пьезоэлектрические актюаторы: Теория и практика. М.: НИИ „Элпа“, 2010. 68 с.