ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

2
Issue
vol 67 / February, 2024
Article

DOI 10.17586/0021-3454-2020-63-8-687-701

UDC 681.518.5:004.052.32

STRUCTURES OF SIGNAL CORRECTION CIRCUITS BASED ON DOUBLE MODULAR REDUNDANCY WITH COMPUTATION CONTROL

V. V. Sapozhnikov
PSTU; Professor, Department of Automation and Telemechanics on the Railways


V. V. Sapozhnikov
PSTU; Professor, Department of Automation and Telemechanics on the Railways


D. V. Ephanov
PSTU; Department of Automation and Telemechanics on the Railways


Read the full article 

Abstract. Methods of synthesis of fault-tolerant discrete devices and systems are investigated. A block dia-gram of signal correction based on the use of double modular redundancy with control of calculations by a preselected feature is proposed. Three options for the implementation of this structure are analyzed. The first structure is based on the control of computations by a copy of the original device by code with repetition, which in fact implies the use of a computation control scheme by the duplication method. The second structure is the control of computations based on a parity code. In the third structure, the control scheme uses a special code with summation of the coefficients of weighted transitions from category to category in the information vector, which makes it possible to construct a control scheme that is simpler than with duplication. Results of experiments on evaluating the efficiency and complexity of the tech-nical implementation of each of the proposed structures with the use of control combinational circuits LGSynth’89 and MCNC Benchmarks are presented. The proposed structures of signal correction circuits based on double modular redundancy are built from standard blocks, which allows them to be widely used for synthesis of fault-tolerant discrete devices.
Keywords: fault-tolerant discrete devices, structural redundancy of the device, triple modular redundancy, double modular redundancy, built-in control circuit, computation control by code with repetition, computation control by parity, computation control by code with summation of weighted transitions

References:
  1. Shcherbakov N.S. Dostovernost' raboty tsifrovykh ustroystv (Reliability of Digital Devices), Mos-cow, 1989, 224 р. (in Russ.)
  2. Sogomonyan E.S., Slabakov E.V. Samoproveryaemye ustroystva i otkazoustoychivye sistemy (The Self-Checked Devices and Failure-Safe Systems), Moscow, 1989, 208 р. (in Russ.)
  3. Mikoni S.V. Obshchiye diagnosticheskiye bazy znaniy vychislitel'nykh sistem (General Diagnostic Knowledge Bases of Computing Systems), St. Petersburg, 1992, 234 р. (in Russ.)
  4. Gavzov D.V., Sapozhnikov V.V., Sapozhnikov Vl.V. Avtomatika i Telemehanika, 1994, no. 8, pp. 3–50. (in Russ.)
  5. Gavrilov M.A., Ostianu V.M., Potekhin A.I. Itogi nauki i tekhniki. Seriya "Teoriya veroyatnostey. Ma-tematicheskaya statistika. Teoreticheskaya kibernetika", 1969, 1970, рр. 7–104. (in Russ.)
  6. Sapozhnikov V.V., Sapozhnikov Vl.V., Efanov D.V. Kody Khemminga v sistemakh funktsional'nogo kontrolya logicheskikh ustroystv (Hamming Codes in Logic Devices Functional Control Systems), St. Petersburg, 2018, 151 р. (in Russ.)
  7. Sapozhnikov V.V., Sapozhnikov Vl.V., Efanov D.V. Kody s summirovaniyem dlya sistem tekhnich-eskogo diagnostirovaniya. Tom 1: Klassicheskiye kody Bergera i ikh modifikatsii (Summed Codes for Technical Diagnostic Systems. Volume 1: Classic Berger Codes and Their Modifications), Moscow, 2020, 383 р. (in Russ.)
  8. Efanov D., Sapozhnikov V., Sapozhnikov Vl. Proceedings of the 15th IEEE East-West Design & Test Symposium (EWDTS`2017), Novi Sad, Serbia, September 29–October 2, 2017, pp. 365-371. DOI: 10.1109/EWDTS.2017.8110126.
  9. Piestrak S.J. Design of Self-Testing Checkers for Unidirectional Error Detecting Codes, Wrocław, Oficyna Wydawnicza Politechniki Wrocłavskiej, 1995, 111 p.
  10. Tshagharyan G., Harutyunyan G., Shoukourian S., Zorian Y. Proceedings of the 15th IEEE East-West Design & Test Symposium (EWDTS`2017), Novi Sad, Serbia, September 29–October 2, 2017, pp. 25–28. DOI: 10.1109/EWDTS.2017.8110065.
  11. Stempkovskiy A.L., Telpukhov D.V., Zhukova T.D., Gurov S.I., Solovyev R.A. Izvestiya SFedU. En-gineering Sciences, 2017, no. 7(192), pp. 197–210. DOI 10.23683/2311-3103-2017-7-197-210.
  12. Stempkovskiy A., Telpukhov D., Gurov S., Zhukova T., Demeneva A. 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 29 January–1 February 2018, Moscow, Russia, pp. 1430–1433. DOI: 10.1109/EIConRus.2018.8317365.
  13. Sogomonyan E.S. Self-Correction Fault-Tolerant Systems, Preprint, October 2018, 30 p. https://www.researchgate.net/publication/328578644_Self-Correction_Fault-Tolerant_Systems.
  14. Kharchenko V.S. Avtomatika i Telemehanika, 1992, no. 12, pp. 140–147. (in Russ.)
  15. Abramov V.M., Nikiforov B.D., Shalyagin D.V. Nauka i tekhnika transporta, 2005, no. 4, pp. 28–43. (in Russ.)
  16. Bestem'yanov P.F. Nadezhnost' i kachestvo (Reliability and Quality), Proceedings of the Interna-tional Symposium, 2007, vol. 2, рр. 273–274. (in Russ.)
  17. Hamamatsu M., Tsuchiya T., Kikuno T. 14th IEEE Pacific Rim International Symposium on De-pendable Computing, 15–17 December 2008, Taipei, Taiwan, pp. 329–350. DOI: 10.1109/PRDC.2008.12.
  18. Chakraborty A. Proceedings of the World Congress on Engineering and Computer Science (WCECS 2009), USA San Francisco, Vol. II, October 20–22, 2009.
  19. Matsumoto K., Uehara M., Mori H. 13th International Conference on Network-Based Information Systems, 14-16 September 2010, Takayama, Japan, pp. 332-336, doi: 10.1109/NBiS.2010.86.
  20. Borecký J., Kohlík M., Vít P., Kubátová H. Euromicro Conference on Digital System Design (DSD), 31 August–2 September 2016, Limassol, Cyprus, pp. 690–693. DOI: 10.1109/DSD.2016.91.
  21. Drozd O., Sachenko A., Antoshchuk S., Drozd J., Kuznietsov M. Proceedings of the 17th IEEE East-West Design & Test Symposium (EWDTS`2019), Batumi, Georgia, September 13–16, 2019, pp. 131–135. DOI: 10.1109/EWDTS.2019.8884396.
  22. Sapozhnikov V.V., Sapozhnikov Vl.V., Efanov D.V. Osnovy teorii nadezhnosti i tekhnicheskoy di-agnostiki (Fundamentals of the Theory of Reliability and Technical Diagnostics), St. Petersburg, 2019, 588 р. (in Russ.)
  23. Sklyar V.V., Kharchenko V.S. Automation and Remote Control, 2002, no. 6(63), pp. 991–1003.
  24. Bochkov K.A., Kharlap S.N., Sivko B.V. Automation on Transport, 2016, no. 1(2), pp. 47–64. (in Russ.)
  25. Sklyar V.V. Obespecheniye bezopasnosti ASUTP v sootvetstvii s sovremennymi standartami (En-suring the Safety of the Process Control System in Accordance with Modern Standards), Moscow, 2018, 384 р. (in Russ.)
  26. Berezyuk N.T., Andrushchenko A.G., Moshchitskiy S.S., Glushkov V.I., Benesha M.M., Gavrilov V.A. Kodirovaniye informatsii (dvoichnyye kody) (Information Coding (Binary Codes)), Khar'kov, 1978, 252 р. (in Russ.)
  27. Аksyonovа G.P. Problemy upravleniya, 2008, no. 5, pp. 62–66. (in Russ.)
  28. Sapozhnikov V.V., Efanov D.V., Dmitriev V.V. Automation and Remote Control, 2017, no. 2(78), pp. 300–312.
  29. Gessel' M., Morozov A.A., Sapozhnikov V.V., Sapozhnikov Vl.V. Automation and Remote Control, 1997, no. 2, pp. 180–193. (in Russ.) 30. Morosow A., Sapozhnikov V.V., Sapozhnikov Vl.V., Goessel M. VLSI Design, 1998, no. 4(5), pp. 333–345. DOI: 10.1155/1998/20389.
  30. Efanov D.V., Sapozhnikov V.V. Automation and Remote Control, 2018, no. 9(79), pp. 1609–1620.
  31. Collection of Digital Design Benchmarks, http://ddd.fit.cvut.cz/prj/Benchmarks/.
  32. Sentovich E.M., Singh K.J., Moon C., Savoj H., Brayton R.K., Sangiovanni-Vincentelli A. Proceed-ings IEEE International Conference on Computer Design: VLSI in Computers & Processors, 11–14 October 1992, Cambridge, MA, USA, USA, pp. 328–333. DOI: 10.1109/ICCD.1992.276282.