ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

2
Issue
vol 67 / February, 2024
Article

DOI 10.17586/0021-3454-2021-64-3-183-191

UDC 517.977.5-629.783

OPTIMAL CONTROL OF THE PIEZO ACTUATOR FOR TUNING THE RADIO-REFLECTING MESH OF SPACE REFLECTOR

S. A. Kabanov
D. F. Ustinov Baltic State Technical University “VOENMEH”, Department of Information Processing Systems and Control, St. Petersburg; Professor


F. V. Mitin
D. F. Ustinov Baltic State Technical University VOENMEH, Department of Control Systems and Computer Technologies;


Read the full article 

Abstract. The process of controlling a piezo actuator for adjusting the shape of radio-reflecting mesh of a large-sized transformable space-based reflector is considered. A point-by-point adjustment scheme is selected. Due to the limited supply of electrical energy on board the spacecraft, the control problem is solved with the account for energy costs in real time. An algorithm has been developed for sequential control optimization for automatic cable length adjustment using a piezo actuator. The algorithm allows minimizing energy costs and fulfilling terminal conditions with high accuracy. By choosing the weighting factors, the best version of the control program is determined for different finite simulation times. The flexibility of the developed algorithm is shown when choosing the optimization criteria.
Keywords: sequential optimization algorithm, large-size transformable reflector, radio-reflective mesh, piezo actuator, mathematical model, modeling

References:
  1. Terada M., Bludworth N., Moore J. et al. IEEE MTT-S International Conference on Microwave and Optoelectronics, Brazil, 2005, рр. 647–656.
  2. Li T. Aerospace Science and Technology, 2012, no. 1(18), pp. 42–47.
  3. Каzаntsеv Z.А. Siberian Journal of Science and Technology, 2017, no. 4, pp. 858–867. (in Russ.)
  4. Xuelin D., Jingli D., Hong B., Guohui S. Aerospace Science and Technology, 2018, vol. 82–83, рр. 557–565.
  5. Wang H. IEEE Aerospace and electronic systems magazine, 2020, no. 5(35), pp. 28–35.
  6. Kabanov S.A., Zimin B.A., Mitin F.V. Mekhatronika, Avtomatizatsiya, Upravlenie, 2020, no. 1(20), pp. 51–64. (in Russ.)
  7. Kabanov S.A., Zimin B.A., Mitin F.V. Mekhatronika, Avtomatizatsiya, Upravlenie, 2020, no. 2(21), pp. 117–128. (in Russ.)
  8. Bobtsov A.A. et al. Ispolnitel'nye ustrojstva i sistemy dlya mikroperemeshchenij (Actuators and systems for micro-displacement), St. Petersburg, 2011, 131 р. (in Russ.)
  9. Tanaka H., Shimozono N., Natori M.C. Transactions of the Japan Society for Aeronautical and Space Sciences, 2008, no. 170(50), pp. 267–273.
  10. Gajbhiye S.C., Upadhyay S.H., Harsha S.P. Journal of Vibration and Control, 2015, no. 6(21), pp. 1162–1170. (in Russ.)
  11. Kabanov S.A., Mitin F.V., Krivushov A.I., Ulybushev E.A. Russian Aeronautics, 2018, no. 4, pp. 111–116 (in Russ.)
  12. Kabanov S.A., Mitin F.V. Izv.RAN. Teoriya i sistemy upravleniya, 2021, no. 2, pp. 106–125. (in Russ).
  13. Zhenxing S., Huijian L., Xiaoning L., Gengkai H. Journal of Thermal Stresses, 2019, no. 11(42), pp. 1339–1356.
  14. Petrovichev M.A., Gurtov A.S. Sistema energosnabzheniya bortovogo kompleksa kosmicheskih apparatov: ucheb. posobie (The Power Supply System of the Onboard Complex of Spacecrafts: the Textbook), Samara, 2007, 88 p. (in Russ.)
  15. Kabanov S.A. Upravlenie sistemami na prognoziruyushchih modelyah (Control Systems Based on Predictive Model), St. Petersburg, 1997, 200 p. (in Russ)
  16. Panich A.E. P'ezokeramicheskie aktyuatory (Piezoceramic Actuators), Rostov-na-Donu, 2008, 159 p. (in Russ.)
  17. Krasovskij A.A., ed., Spravochnik po teorii avtomaticheskogo upravlenija (Handbook on the Theory of Automatic Control), Moscow, 1987, 712 p. (in Russ)