ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

2
Issue
vol 67 / February, 2024
Article

DOI 10.17586/0021-3454-2021-64-3-192-201

UDC 517.977.5-629.783

ALGORITHM FOR SEQUENTIAL OPTIMIZATION OF THE STAGE OF EXTENDING THE SPOKES OF A LARGE-SIZED TRANSFORMABLE REFLECTOR

D. S. Kabanov
Moscow Aviation Institute (National Research University), Department of Systems Analysis and Control; Post-Graduate Student


E. N. Nikulin
D. F. Ustinov Baltic State Technical University “VOENMEH”, Department of Destruction Means and Ammunition, St. Petersburg; Professor


Read the full article 

Abstract. The process of spokes extension of a large-sized space-based reflector is considered with the account for compression oscillations. An improved mathematical model of the spokes extension is proposed, which includes mechanisms of the stop and the lock of longitudinal vibrations. The model makes it possible to explore the system vibrations at any point of the spoke during the simulation. An algorithm for sequential optimization of the control of automatic extension of antenna elements has been developed, which allows minimizing system oscillations and fulfilling terminal conditions with high accuracy. Results of numerical simulation are presented, showing the advantage of the proposed algorithm in comparison with classical control methods.
Keywords: sequential optimization algorithm, large-size transformable reflector, mathematical model, translational motion, simulation

References:
  1. Hongjian W., Qiyan H., Min Y. et al. IET Microwaves Antennas & Propagation, 2018, no. 11(12), pp.‏ 1765–1770.
  2. Siriguleng B., Zhang W., Liu T., Liu Y.Z. Engineering Structures, 2020, vol. 207, рр. 148–153.
  3. Puig L., Barton A., Rando N. Acta Astronautica, 2010, vol. 67, рр. 12–26.
  4. Santiago-Prowald J, Baier H. CEAS Space Journal, 2013, vol. 5, рp. 89–115.
  5. Dewalque P., Collette J.-P., Bruls O. Acta Astronautica, 2016, vol. 123, рр. 271–282.
  6. Ramachandran S., Neve M.J., Sowerby K.W. IEEE Aerospace and Electronic Systems Magazine, 2018, no. 15(12), pp. 2390–2394.
  7. Kabanov S.A., Zimin B.A., Mitin F.V. Mekhatronika, Avtomatizatsiya, Upravlenie, 2020, no. 1(20), pp. 51–64. (in Russ.)
  8. Kabanov S.A., Zimin B.A., Mitin F.V. Mekhatronika, Avtomatizatsiya, Upravlenie, 2020, no. 2(21), pp. 117–128. (in Russ.)
  9. Kabanov S.A. Upravlenie sistemami na prognoziruyushchih modelyah (Control Systems Based on Predictive Model), St. Petersburg, 1997, 200 p. (in Russ)
  10. Kabanov S.A., Nikulin E.N., Yakushev B.E., Yakusheva D.B. Journal of Instrument Engineering, 2011, no. 5(54), pp. 56–65. (in Russ.)
  11. Malushev V.V., Kabanov D.S. Journal of Instrument Engineering, 2012, no. 7(55), pp. 21–27. (in Russ)
  12. Kabanov D.S. Mekhatronika, Avtomatizatsiya, Upravlenie, 2014, no. 1, pp. 60–66. (in Russ)
  13. Kabanov S.A., Kabanov D.S. Zadachi upravleniya s optimizaciej parametrov prognoziruyushchih modelej (Control Tasks with Optimization of Predictive Model Parameters), St. Petersburg, 2017, 110 p. (In Russ).
  14. Kabanov S.A., Mitin F.V. Acta Astronautica, 2020, vol. 176, рр. 717–724.
  15. Kabanov S.A., Mitin F.V. Izv.RAN. Teoriya i sistemy upravleniya, 2021, no. 2, pp. 106–125. (in Russ).
  16. Panovko Y.G. Vnutrennee trenie pri kolebaniyah (The internal friction at vibrations), Moscow, 1960, 193 p. (in Russ)
  17. Krasovskij A.A., ed., Spravochnik po teorii avtomaticheskogo upravlenija (Handbook on the Theory of Automatic Control), Moscow, 1987, 712 p. (in Russ)