ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

4
Issue
vol 67 / April, 2024
Article

DOI 10.17586/0021-3454-2022-65-2-101-111

UDC 537.312.52:544.537

PHASE MASKS MADE OF BIREFRINGENT PLATES FOR SHAPING LASER BEAMS WITH ULTRASHORT PULSES FOR LASER MATERIAL PROCESSING IN THE IMAGE PLANE

Костюк Г. .
;


V. A. Shkuratova
ITMO University, Faculty of Nanoelectronics;


A. A. Petrov
ITMO University, 197101, Saint-Petersburg, Russian Federation; Associate professor


M. M. Sergeev
ITMO University, Saint Petersburg, 197101, Russian Federation; Associate Professor, Senior Researcher


Read the full article 

Abstract. Phase masks made of birefringent CaCO3 crystal plates are developed to create laser beam with a given shape and intensity distribution close to flat-top in image construction scheme. The principle of phase masks operation is based on creating the phase shift of  or 2 (depending on the initial plate thickness) in linearly polarized radiation passing through etched areas with given shapes. The phase shift in these areas transforms into the intensity distribution at an analyzer output, which can be projected with a demagnification by a high-quality lens into its image plane aligned with the micro-processing plane (target). Phase masks in the form of a square and a square in a square are made by processing optically transparent materials with laser-induced microplasma and successfully tested in an experimental setup in an imaging scheme with a laser emitting pulses of 120 ns duration at the wavelength of 1.06 μm. Phase masks are also used in this experimental setup for laser ablation of polished steel samples. The shapes of footprints on samples well match the formed beams shapes.
Keywords: phase masks, geometric phase elements, laser beams, polarization, birefringent crystals

References:
  1. Liu Z., Yao X., Cheng X., Wu H., Wang H., Shen H. J. Micromech. Microeng., 2020, no. 065011(30).
  2. Worts N., Jones J., Squier J. Opt. Commun., 2019, vol. 430, рр. 352–357.
  3. Gao B., Chen T., Cui W., Li C., Si J., Hou X. Opt. Eng., 2015, no. 126106(54).
  4. Roth G.L., Adelmann B., Hellmann R. J. Laser Micro Nanoeng., 2015, vol. 10, рр. 279–283.
  5. Wang M., Lin J.T., Xu Y.X., Fang Z.W., Qiao L.L., Liu Z.M., Fang W., Cheng Y. Opt. Commun., 2017, vol. 395, рр. 249–260.
  6. Ali J.M.Y, Shanmugam V., Lim B., Aberle A.G., Mueller T. Sol. Energy, 2018, vol. 164, рр. 287–291.
  7. Paun I.A., Zamfirescu M., Mihailescu M., Luculescu C.R., Mustaciosu C.C., Dorobantu I., Calenc B., Dinescu M. J. Mater. Sci., 2015, vol. 50, рр. 923–936.
  8. Li Q., Perrie W., Potter R., Allegre O., Li Z., Tang Y., Zhu G., Liu D., Chalker P., Ho J. J. Phys. D: Appl. Phys., 2020, no. 365301(53).
  9. Polimeno P., Magazzu A., Iati M.A., Patti F., Saija R., Boschi C.D.E., Donato M.G., Gucciardi P.G., Jones P.H., Volpe G., Marago O.M. J. Quant Spectrosc. Radiat. Transf., 2018, vol. 218, рр. 131–150.
  10. Gordon R. Opt. Laser Technol., 2019, vol. 109, рр. 328–335.
  11. Ji X., Mu R., Fang J., Xu S., Han L. Proceedings of SPEE - Quantum Optics and Applications in Computing and Communications II, 2005, vol. 5631, рр. 237–243.
  12. Xia Y., Yin J. J. Opt. Soc. Am. B., 2005, vol. 22, рр. 529–536.
  13. McKnight D.J., Vass D.G., Sillitto R.M. Appl. Opt., 1989, vol. 28, рр. 4757–4762.
  14. Courtial J., Dholakia K., Allen L., Padgett M.J. Opt. Commun., 1997, vol. 144, рр. 210–213.
  15. Zhou N., Liu J., Wang J. Sci. Rep., 2018, vol. 8, рр. 1–10.
  16. Qu W., Gu H., Tan Q., Jin G. Appl. Opt., 2015, vol. 54, рр. 6521–6525.
  17. Katz S., Kaplan N., Grossinger I. Optik & Photonik, 2018, vol. 13, рр. 83–86.
  18. Mizunami T., Kawashima H., Hayashi A. Proceedings of 2002 IEEE/LEOS Workshop on Fibre and Optical Passive Components (Cat. No. 02EX595), 2002, рр. 92–97.
  19. Zhao Q., Gong L., Li Y.M. Appl. Opt., 2015, vol. 54, рр. 7553–7558.
  20. Kuang Z., Li J., Edwardson S., Perrie W., Liu D., Dearden G. Opt. Lasers Eng., 2015, vol. 70, рр. 1–5.
  21. Li J., Kuang Z., Edwardson S., Perrie W., Liu D., Dearden G. Appl. Opt., 2016, рр. 1095–1100.
  22. Sanner N., Huot N., Audouard E., Larat C., Huignard J., Loiseaux B. Opt. Lett., 2005, vol. 30, рр. 1479–1481.
  23. Sanner N., Huot N., Audouard E., Larat C., Huignard J. Opt. Lasers Eng., 2007, vol. 45, рр. 737–741.
  24. Liu D., Kuang Z., Shang S., Perrie W., Karnakis D., Kearsley A., Knowles M., Edwardson S., Dearden G., Watkins K. Proceedings of LAMP2009 – the 5th International Congress on Laser Advanced Materials Processing, 2009, рр. 1–5.
  25.  Allegre O.J., Jin Y., Perrie W., Ouyang J., Fearson E., Edwardson S., Dearden J. Opt. Express, 2013, vol. 21, рр. 21198–21207.
  26. Gerchberg R.W., Saxton W.O. Optik, 1972, vol. 35, рр. 237–246.
  27. Shkuratova V.A., Kostyuk G.K., Sergeev M.M., Zakoldaev R.A., Yakovlev E.B. Opt. Mat. Express, 2019, vol. 9, рр. 2392–2399.
  28.  Shkuratova V., Kostyuk G., Sergeev M., Vikhrova E. IEEE Photonics J., 2019, no. 2201112(11).
  29.  Shkuratova V., Rymkevich V., Kostyuk G., Sergeev M. J. Laser Micro Nanoeng., 2018, vol. 13, рр. 211–215.
  30.  Kostyuk G.K., Zakoldaev R.A., Sergeev M.M., Veiko V.P. Opt. Quantum Electron., 2016, no. 249(48).
  31. Kostyuk G.K., Zakoldaev R.A., Koval V.V., Sergeev M.M., Rymkevich V.S. Opt. Lasers Eng., 2017, vol. 92, рр. 63–69.
  32. Born M., Wolf E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Elsevier, 2013.
  33. Dickey F.M. Laser Beam Shaping: Theory and Techniques, CRC Press, 2000.
  34. ISO 13694:2000 "Optics and optical instruments — Lasers and laser-related equipment — Test methods for laser beam power (energy) density distribution", https://www.iso.org/obp/ui/#iso:std:iso:13694:ed-1:v1:en.