ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

4
Issue
vol 67 / April, 2024
Article

DOI 10.17586/0021-3454-2022-65-8-565-574

UDC 004.032.26

SUBSTANTIATION OF THE NEURAL NETWORK STRUCTURE FOR DETERMINING AN ORBITAL OBJECT MOTION PARAMETERS BASED ON RESULTS OF ITS OBSERVATIONS FROM A SPACECRAFT

V. . Ananenko
A. F. Mozhaisky Military Space Academy, Department of Autonomous Control Systems;


A. D. Golyakov
A. F. Mozhaysky Military Space Academy, Department of Autonomous Control Systems, St. Petersburg; Professor


A. A. Sasunkevich
A. F. Mozhaisky Military Space Academy, Department of Autonomous Control Systems;


Read the full article 

Abstract. The structure of a multilayer neural network of direct propagation, designed to determine the motion parameters of the mass center of a non-cooperating orbital object by results of measurements carried out by a spacecraft optical-electronic system, is substantiated. The orbital object zenith distances at characteristic points of the spacecraft's orbit and the time of the orbital object's passage between these points were chosen as the measured parameters. The shortest duration of training for a given accuracy of determining the of the orbital object's center of mass motion parameters is determined. The presented results can be used in justification and development of systems for autonomous determination of the parameters of motion of the orbital object center of mass based on a spacecraft onboard optical means.
Keywords: spacecraft, onboard system, orbital object, motion parameters of orbital object mass center, onboard measurements, neural network

References:
  1. Hutorovsky Z.N. Space Research, 1993, no. 4(31), pp. 101–114. (in Russ.)
  2. Brandin V.N., Razorenov G.N. Opredeleniye trayektoriy kosmicheskikh apparatov (Determination of Spacecraft Trajectories), Moscow, 1978, 216 p. (in Russ.)
  3.  Minakov E.P., Vlasov R.P. Proceedings of the Tula State University, Technical Sciences, 2019, no. 3, pp. 184–191. (in Russ.)
  4. Glushchenko A.A., Khokhlov V.P. Proceedings of Tula State University, Technical Sciences, 2021, no. 12, pp. 164–170. (in Russ.)
  5. Golyakov A.D. Vvedeniye v teoriyu vzaimnoy navigatsii iskusstvennykh sputnikov Zemli (Introduction to the Theory of Mutual Navigation of Artificial Earth Satellites), St. Petersburg, 1992, 142 p. (in Russ.)
  6. Kuznetsov V.I. Avtomatizirovannaya sistema nauchnykh issledovaniy metodov i algoritmov avtonomnoy navigatsii i oriyentatsii kosmicheskikh apparatov (Automated System of Scientific Research of Methods and Algorithms of Autonomous Navigation and Orientation of Spacecraft), St. Petersburg, 2010, 453 p. (in Russ.)
  7. Anshakov G.P., Golyakov A.D., Petrishchev. V.F., Fursov V.A. Avtonomnaya navigatsiya kosmicheskikh apparatov (Autonomous Navigation of Spacecraft), Samara, 2011, 486 p. (in Russ.)
  8. Golyakov A.D., Ananenko V.M., Fominov I.V. Sistemy navigatsii letatel'nykh apparatov (Aircraft Navigation Systems), St. Petersburg, 2018, 273 p. (in Russ.)
  9. Treshchalin A.P. Proceedings of the MIPT, 2012, no. 3(4), pp. 122–131. (in Russ.)
  10. Ananenko V.M., Golyakov A.D., Kalabin P.V. Vestnik of Samara University. Aerospace engineering, technology and engineering, 2020, no. 2(19), pp. 7–18. (in Russ.)
  11. Sukhanov N.V. Proceedings of the MAI, 2013, no. 65, http://trudymai.ru/published.php?ID=36013. (in Russ.)
  12.  Korevanov S.I., Kazin V.V. Scientific Vestnik of MSTU GA, 2014, no. 201, pp. 46–49. (in Russ.)
  13. Vorontsov V.A., Fedorov E.A. Proceedings of MAI, 2015, no. 82. https://trudymai.ru/published.php?ID=58817. (in Russ.)
  14. Mikhailin D.A. Scientific Bulletin of MSTU GA, 2017, no. 04(20), pp. 18–24. (in Russ.)
  15. Sutton R.S., Barto Andrew G. Reinforcement learning, Cambridge, Mass MIT Press, 2018.
  16. Gorbachevskaya E.N. Bulletin of Volga University named after V.N. Tatishchev, 2012, no. 2(19), pp. 23–24. (in Russ.)
  17. Bogoslavskiy S.N. Scientific Journal of KubGAU, 2007, no. 3(27), pp. 228–238. (in Russ.)
  18. Sogomonyan E.S., Slabakov E.V. Samoproveryaemye ustroystva i otkazoustoychivye sistemy (The Self-Checked Devices and Failure-Safe Systems), Moscow, 1989, 208 р. (in Russ.)