СПИСОК ЛИТЕРАТУРЫ

- 1. Plastinfo.ru. Литьевые армированные изделия: характеристики коробления [Электронный ресурс]: http://plastinfo.ru/information/articles/print/167.
- 2. Яблочников Е. И., Брагинский А. Б., Восоркин С. В. Применение систем виртуального моделирования при выборе и проектировании полимерных композиционных материалов // Изв. вузов. Приборостроение. 2012. Т. 55, № 7. С. 75—80.
- 3. *Альтенбах X., Науменко К.* и др. Численное исследование влияния технологических параметров изготовления на упругие свойства коротковолокнистых композитных материалов // Вестн. НТУ "ХПИ". Харьков, 2003. Т. 1. С. 184—192.
- 4. *Phelps J. H., Tucker Ch. L.* An anisotropic rotary diffusion model for fiber orientation in short- and long-fiber thermoplastics // J. of Non-Newtonian Fluid Mechanics. 2009. Vol. 156, is. 3. P. 165—176.

Сведения об авторе

Алексей Сергеевич Восоркин — аспирант; Университет ИТМО, кафедра технологии приборостроения, Санкт-Петербург; E-mail: asvosorkin@gmail.com

Рекомендована кафедрой технологии приборостроения

Поступила в редакцию 09.04.14 г.

УДК 621.363

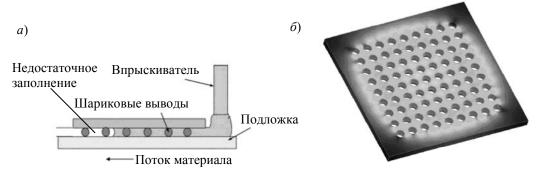
Е. И. Яблочников, П. В. Смирнов, А. С. Воробьев

ПРИМЕНЕНИЕ СИСТЕМ ВИРТУАЛЬНОГО МОДЕЛИРОВАНИЯ ДЛЯ РАЗРАБОТКИ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ КОРПУСИРОВАНИЯ ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

Рассмотрены основные типы корпусов интегральных микросхем и технологии корпусирования, основанные на применении инжекционно-компрессионнного литья. Указаны преимущества применения полимерных материалов для корпусирования электронных компонентов. Рассмотрены особенности применения систем виртуального моделирования технологических процессов при изготовления корпусов различных типов.

Ключевые слова: корпус, электронный компонент, инжекционно-компрессионное литье, специализированный программный комплекс, моделирование технологических процессов.

Рассмотрим три основных типа корпусов электронных компонентов: с плоскими и вертикальными выводами, с шариковыми выводами на нижней плоскости корпуса и в форме пластины [1]. Первый тип корпусов наиболее распространен, но его главным недостатком является возможность деформации выводов в процессе формовки, тестирования и транспортировки на сборку, а также относительно большие габариты. Второй и третий типы относятся к более новым технологиям изготовления, которые активно развиваются в связи с тенденцией к миниатюризации изделий. Уменьшение размеров электронного компонента приводит к расширению областей его применения, начиная от калькулятора, часов и CD-привода и заканчивая микропроцессорами и микроконтроллерами. При корпусировании на уровне пластин основной задачей является выдерживание точности позиционирования, а при использовании корпусов с шариковыми выводами могут возникать трудности с контролем герметизации.


Во всех рассматриваемых типах корпусов используются полимерные материалы для герметизации с целью защиты элементов и компонентов интегральных микросхем от воздействия внешней среды (действия агрессивных сред, атмосферного кислорода, пыли, влаги, ме-

ханических и электромагнитных воздействий и вибрации). Комплекс мероприятий и технологических операций по герметизации обеспечивает надежность при изготовлении, хранении и эксплуатации [2, 3]. Применение полимерных материалов для герметизации связано с дальнейшей микроминиатюризацией, заменой дорогостоящих металлостеклянных и металлокерамических корпусов, экономией драгоценных металлов, возможностью совмещения различных технологических операций и автоматизации.

Различные типы интегральных микросхем герметизируют разными способами, что связано в основном с их конструктивными особенностями и объемами производства. Полимерные корпуса получили широкое распространение, несмотря на то что герметизация полимерными материалами имеет ряд недостатков: ухудшение условий теплоотвода; появление механических напряжений, возникающих при отверждении герметика; недостаточность влагостойкости вследствие сорбции влаги полимерами; подверженность процессам старения. Моделирование технологического процесса помогает на ранних стадиях создания изделия увидеть возможные проблемы и найти способы их устранения или уменьшения влияния.

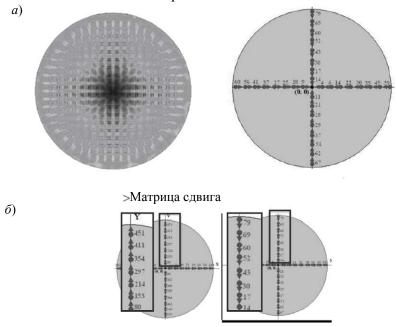
Проектирование электронных компонентов требует применения современного программного обеспечения. При разработке микросистемных изделий необходимо проводить инженерный анализ физических процессов, происходящих в них. Для анализа каждого из этих процессов существуют специализированные программные комплексы: например, для анализа тепловых, механических и оптических процессов используются программные комплексы Coventor, Oofelie и Comsol. В области анализа процессов литья полимеров специализированным программным комплексом является Moldex3D [4], который позволяет решать проблемы, возникающие при изготовлении корпусов интегральных микросхем, и открывает дополнительные возможности для выбора конструкторско-технологических решений при создании литьевой формы.

Одним из возможных способов изготовления корпусов интегральных микросхем является инжекционно-компрессионное литье, основанное на введении термопластичного полимерного расплава в слегка открытую литьевую форму при одновременном или последующем прессовании с помощью дополнительного хода запирания. Используемое при инжекционно-компрессионном литье низкое давление позволяет предохранять закладные детали от повреждений. Одним из главных недостатков этого метода является недолив форм (рис. 1, а). Основной его причиной является нехватка материала, поступающего в литьевую форму (из-за низкой температуры формы или расплава и, следовательно, пониженной текучести расплава, а также по причине засорения литникового и разводящих каналов), или неправильный расчет объема впрыска. Данная проблема наиболее распространена при создании корпусов с шариковыми выводами на нижней плоскости корпуса.



Puc. 1

Моделирование заполнения (рис. 1, δ) дает возможность на стадии проектирования обнаруживать потенциальные дефекты, учитывать и устранять факторы, ведущие к недоливу, сводить к минимуму воздействия на подложку, что позволяет повысить надежность спроек-


тированного корпуса. Важной задачей является выбор литьевой формы и расположения литниковых каналов. С помощью модуля Injection Compression Molding (ICM) системы Moldex3D имитируется процесс формообразования с последующим контролем тепловыделения, давления и однородности свойств во время процесса отверждения.

С помощью моделирования можно контролировать состояние деформации выводов корпусов с плоскими и вертикальными выводами, отслеживая равномерность потока заполнения (рис. 2).

Puc. 2

Использование системы виртуального моделирования позволяет достичь требуемой точности позиционирования (рис. 3, a) при корпусировании на уровне пластин и повысить качество сжатия матрицы (рис. 3, δ), что обеспечивает повышение точности проектирования и снижение вероятности возникновения короблений.

Качество герметизации зависит от физико-механических свойств (плотности, теплопроводности, механической прочности, термостойкости, электроизоляционных свойств) полимеров и технологических процессов их литья. В зависимости от типа герметизируемых приборов те или иные характеристики приобретают особое значение. К параметрам технологических процессов относятся текучесть, скорость отверждения и усадка. Защитные свойства полимерного корпуса характеризуются скоростью проникновения через его материал газов и паров, количеством адсорбируемой влаги, адгезией пластмассы к металлу рамки и выводов. Поэтому помимо проведения обязательных в процессе моделирования проверочных расчетов по оценке тепловых режимов работы, анализу характеристик надежности работы и определению

Puc. 3

обеспечения влагозащиты для повышения эффективности методов диагностирования и контроля качества герметизации полимерных корпусов (пористости, неоднородностей, трещин, инородных включений, адгезии к выводной рамке, состояния межсоединений после герметизации) применяются методы неразрушающего контроля: лазерное фотоакустическое диагностирование и рентгенотелевизионная дефектоскопия [5].

Заключение. Полученные в настоящей статье результаты необходимы для последующих исследований в области создания корпусов электронных компонентов методом инжекционно-компрессионного литья с применением специализированных программных комплексов для проведения виртуального моделирования технологических процессов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Прищепа М. М., Погребняк В. П.* Микроэлектроника. Ч. 1. Элементы микроэлектроники. М.: Высшая школа, 2004. С. 431—435.
- 2. *Linke B.* Understanding Flip-Chip and Chip-Scale Package technologies and their applications // Maxim Integrated circuits, 2007.
- 3. Wimer J. J. 3-D Chip Scale with Lead-Free Processes // J. Semiconductor International. 2003. N 10.
- 4. Яблочников Е. И., Брагинский В. А., Восоркин А. С. Применение систем виртуального моделирования при выборе и проектировании полимерных композиционных материалов // Изв. вузов. Приборостроение. 2012. Т. 55, № 7. С. 75—80.
- 5. *Ланин В., Волкенштейн С., Клюева С.* Контроль качества герметизации пластмассовых корпусов интегральных схем // Технологии в электронной промышленности. 2009. № 8.

Сведения об авторах

Евгений Иванович Яблочников

- канд. техн. наук, доцент; Университет ИТМО, кафедра технологии приборостроения, Санкт-Петербург; заведующий кафедрой; E-mail: eugeny@beepitron.com

Павел Васильевич Смирнов

— аспирант; Университет ИТМО, кафедра технологии приборостроения, Санкт-Петербург; E-mail: pavelsmirnov2011@gmail.com

Анатолий Сергеевич Воробьев

 аспирант; Университет ИТМО, кафедра технологии приборостроения, Санкт-Петербург; E-mail: delarge@mail.ru

Рекомендована кафедрой технологии приборостроения

Поступила в редакцию 09.04.14 г.