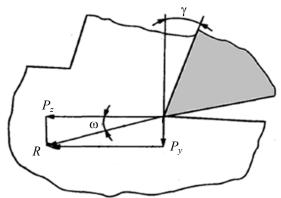
УДК 621.91.01

DOI: 10.17586/0021-3454-2015-58-4-315-317

СПОСОБЫ ОПРЕДЕЛЕНИЯ СИЛ РЕЗАНИЯ, ВОЗНИКАЮЩИХ В ПРОЦЕССЕ ОБРАБОТКИ ЗАГОТОВОК

 $P. M. И CAEB^1, A. B. Любивый^2$


¹ ОАО "Техприбор", 196128, Санкт-Петербург, Россия

² OAO "Камчатский гидрофизический институт", 197183, Санкт-Петербург, Россия E-mail: lubiviyandrey@gmail.com

Рассмотрены два способа определения силы резания — важной составляющей моделирования в системе инженерного анализа. Обоснована целесообразность применения способа, основанного на постулатах теории резания.

Ключевые слова: силы резания, механообработка, деформация, система инженерного анализа.

При анализе процесса резания необходимо рассматривать усилия, возникающие между резцом и заготовкой в процессе механической обработки, как систему тангенциальной P_z , радиальной P_y и осевой P_x составляющих сил резания. В процессе точения система сил может быть приведена к одной равнодействующей R (см. рисунок) — силе резания. Точка приложения этой силы находится на рабочей части режущей кромки [1, 2].

При определении силы резания классическими методами в инженерных расчетах используются эмпирические зависимости ее значений от режимов резания. После проведения ряда экспериментов по определению этой зависимости была выведена формула, традиционно используемая в справочниках по механической обработке:

$$P_i = C_{Pi} t^f s^g V^h K_{qi}, (1)$$

где P_i — составляющая силы резания; C_{Pi} — постоянный коэффициент, отражающий влияние условий обработки, поддерживаемых постоянными в ходе эксперимента; t — глубина резания (мм); s — подача (мм/об); V — скорость резания (м/мин); показатели f, g, h характеризуют интенсивность влияния соответствующего элемента режима резания на P_i ; K_{qi} — коэффициент, учитывающий влияние свойств обрабатываемого материала, геометрию инструмента, износа и других факторов, не учитываемых коэффициентом C_{Pi} [3, 4].

Силу резания возможно рассчитать не только по эмпирической формуле (1), но и по формулам, построенным согласно постулатам теории резания. В большинстве случаев практический интерес представляет только расчет основных характеристик процесса, а именно

усадки стружки и сил резания. Ниже приведены необходимые формулы, выведенные для расчета усадки стружки и равнодействующей силы резания [5]:

$$\xi = \frac{\cos(\varphi_1 - \gamma)}{\left[1 - n\varepsilon_1 F(\varphi_1)\right]^{n-1} \sin\varphi_1}, \quad R = \frac{Aa^l b^m \xi \varepsilon_1^{n-1} \sin\varphi_1}{\cos(k\varphi_1 + \omega)\cos(\varphi_1 - \gamma)\sin(k\varphi_1)}, \tag{2}$$

 ε_1 — деформация относительного сдвига на правой границе пластической зоны; φ_1 — угол между правой границей пластической зоны и плоскостью резания; γ — передний угол; k — коэффициент, учитывающий характер напряженного состояния в пластической зоне; ω — угол между равнодействующей силой и плоскостью резания; ξ — усадка стружки; n — коэффициент, характеризующий упрочнение обрабатываемого материала при пластической деформации (характеристика политропы сдвига); A — параметр, характеризующий сопротивление обрабатываемого материала пластическому сдвигу при ε = 1; a и b — толщина и ширина срезаемого слоя.

При моделировании процесса механической обработки в САЕ-системе необходимо задать ряд входных параметров, в частности, силы резания. Перед авторами настоящей статьи была поставлена задача выбора способа расчета силы резания — с использованием формулы (1) или (2).

Был проведен эксперимент, в ходе которого на токарном обрабатывающем центре с числовым программным управлением HAAS SL-10T были изготовлены тонкостенные детали из трех видов конструкционных материалов при различных режимах резания. В результате эксперимента были измерены деформации на всех деталях.

Далее по эмпирическим формулам (1) и по формулам профессора Зорева Н. Н. (2) с учетом свойств обрабатываемых материалов и назначенных режимов был проведен расчет сил резания. На основании полученных данных в CAE-системе ANSYS были определены деформации заготовки. Результаты представлены в таблице, где Δ_1 — деформации, рассчитанные по формуле (1), Δ_2 — деформации, рассчитанные по формуле (2), Δ — измеренные деформации.

№ эксперимента	Материал	t, mm	s, мм/об	Δ_1 , мкм	Δ_2 , MKM	Δ, мкм
1	Алюминий Д16Т	0,25	0,18	8,21	5,78	9
2		0,5	0,18	11,8	11,6	13
3		0,5	0,09	7,89	6,88	9
4		0,25	0,09	5,48	3,44	6
5	Бронза АЖ9-4	0,25	0,18	3,32	1,52	4
6		0,5	0,18	6,64	3,04	9
7		0,5	0,09	3,32	1,92	4
8		0,25	0,09	1,66	0,96	2
9	Сталь40	0,25	0,18	3,71	2,47	5
10		0,5	0,18	7,85	4,91	9
11		0,5	0,09	3,79	3,15	5
12		0,25	0,09	1,79	1,59	2

Из таблицы видно, что силы резания, рассчитанные с использованием формулы (2), близки к экспериментальным значениям.

Стоит отметить, что использование системы инженерного анализа при моделировании процесса механической обработки позволяет еще на этапе проектирования технологического процесса определить возможные деформации заготовки и назначить оптимальные режимы резания.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Ящерицын П. И., Еременко М. Л., Жигалко Н. И.* Основы резания материалов и режущий инструмент. Мн.: Выш. школа, 1981. 560 с.
- 2. Ящерицын П. И., Фельдштейн Е. Э., Корниевич М. А. Теория резания. Мн.: Новое знание, 2006. 512 с.
- 3. *Косилова А. Г., Мещерякова Р. К.* Справочник технолога-машиностроителя. Т. 2. М.: Машиностроение, 1986. 656 с.
- 4. Малов А. Н. Справочник технолога-машиностроителя. Т. 2. М.: Машиностроение, 1973. 311 с.
- 5. Зорев Н. Н. Исследование элементов механики процесса резания. М., 1952. 362 с.

Сведения об авторах

Расим Мирмагмудович Исаев — ОАО "Техприбор"; инженер; Университет ИТМО, кафедра технологии приборостроения; аспирант; E-mail: ras man@mail.ru

Андрей Валентинович Любивый — ОАО "КГФИ"; инженер-разработчик; Университет ИТМО, кафедра

технологии приборостроения; аспирант; E-mail: lubiviyandrey@gmail.com

Рекомендована кафедрой технологии приборостроения

Поступила в редакцию 22.10.14 г.

Ссылка для цитирования: *Исаев Р. М., Любивый А. В.* Способы определения сил резания, возникающих в процессе обработки заготовок // Изв. вузов. Приборостроение. 2015. Т. 58, № 4. С. 315—317.

METHODS OF DETERMINING THE CUTTING FORCES ARISING IN THE ACT OF WORKPIECE PROCESSING

R. M. Isaev 1, A. V. Lubiviy 2

¹ JSC "Tehpribor", 196128, Saint Petersburg, Russia

² JSC "KGFI", 197183, Saint Petersburg, Russia E-mail: lubiviyandrey @gmail.com

The problem of modeling the process of machining in CAE-systems is considered. A method of cutting force determining based on the cutting theory postulates is justified.

Keywords: cutting force, the machining, deformation, system of engineering analysis.

Data on authors

Rasim M. Isaev — JSC "Tehpribor"; Engineer; ITMO University, Department of Instrumentation

Technology; Post-Graduate Student; E-mail: ras_man@mail.ru

Andrey V. Lubiviy — JSC "KGFI"; Engineer; ITMO University, Department of Instrumentation Technology; Post-Graduate Student; E-mail: lubiviyandrey@gmail.com

Reference for citation: *Isaev R. M., Lubiviy A. V.* The methods of determining the cutting forces that arise in the processing of machining the parts // Izvestiya Vysshikh Uchebnykh Zavedeniy. Priborostroenie. 2015. Vol. 58, N 4. P. 315—317 (in Russian).

DOI: 10.17586/0021-3454-2015-58-4-315-317