АВТОНОМНАЯ АСТРОНОМИЧЕСКАЯ СИСТЕМА НАВИГАЦИИ И СЛЕЖЕНИЯ

В. И. КУЗНЕЦОВ, Т. В. ДАНИЛОВА

Военно-космическая академия им. А. Ф. Можайского, 197198, Санкт-Петербург, Россия E-mail: danitoma58@yandex.ru

Представлена автономная астрономическая система навигации и ориентации искусственных спутников Земли (ИСЗ), основанная на измерениях углов "ИСЗ—звезда" с использованием оптико-электронных приборов. Для решения навигационной задачи разработаны взаимно-угловой метод и метод слежения. В обоих методах на основе формирования оценок ориентации рассчитывается направление линии визирования. Метод слежения, помимо формирования высокоточных данных навигационного определения наблюдаемого ИСЗ, обеспечивает выявление фактов изменения его орбиты (маневра), в том числе и при малых (1—3 м/с) импульсах. Представлены результаты имитационного моделирования разработанных методов. Предлагаемая система, основанная на пассивных измерениях, обладает повышенной помехоустойчивостью, автономностью и устойчивостью функционирования. Результаты разработок могут найти применение в автономных системах наблюдения за космическими объектами.

Ключевые слова: автономная навигация, автономная ориентация, методы навигации, астроизмерения, распознавание звезд, оптико-электронный прибор, системы наблюдения, изменение орбиты.

В русле общемировой тенденции повышения уровня автономности функционирования систем управления искусственных спутников Земли (ИСЗ), переноса функций управления с наземных на бортовые комплексы управления (БКУ) астрономические системы навигации и ориентации, основанные на использовании данных пассивных измерений относительно естественных полей, являются наиболее перспективными. Актуальность разработки таких систем определяется также надежностью, помехозащищенностью и малыми массогабаритными характеристиками требуемых для их реализации измерителей. Особенно важно создавать автономные астрономические системы наблюдения (слежения), позволяющие оперативно выявляять факт изменения орбиты ИСЗ, в том числе при малых импульсах (1—3 м/с).

В настоящей статье представлена разработанная авторами система автономной навигации, ориентации и слежения, основанная на бортовых измерениях углов "ИСЗ—звезда". Для решения навигационной задачи предлагаются взаимно-угловой метод и метод слежения модификации широко известного взаимного метода автономной навигации. Задача ориентации решается на основе распознавания звезд в оптико-электронном приборе (ОЭП), жестко закрепленном на корпусе ИСЗ.

Классический взаимный метод предполагает измерения угла "ИСЗ—звезда", дальности между спутниками и в некоторых случаях — радиальной (относительной) скорости. Измерения производятся с первого (собственного) спутника ИСЗ-1 относительно второго (наблюдаемого) ИСЗ-2; высота орбиты первого, как правило, меньше высоты орбиты второго. При этом возможно определить вектор состояния либо одного (любого) ИСЗ — шестимерная задача, либо обоих — двенадцатимерная задача [1—3]. Для реализации метода необходимы, как минимум, помещенный в карданов подвес ОЭП, дальномер и, возможно, допплеровский измеритель скорости. На рисунке приведена схема бортовых измерений для взаимного и вза-имно-углового методов (О — центр масс Земли; ИСЗ-1, ИСЗ-2 — положение на орбите

космических аппаратов; ϑ_1 , ϑ_2 — углы с ИСЗ-1 на ИСЗ-2 и звезды; ρ — расстояние ИСЗ-1— ИСЗ-2 (дальность)). Решение задачи ориентации во взаимном методе не рассматривалось.

Взаимно-угловой метод автономной навигации. В настоящей работе представлена модификация классического взаимного метода — взаимно-угловой метод навигации, основанный только на измерении углов "ИСЗ—звезда" и исключающий измерение дальности и радиальной скорости. Использование метода позволяет существенно сократить состав навигационных измерителей на ИСЗ-1: задача решается при двух ОЭП, один из которых (ОЭП-1) жестко закреплен на корпусе и предназначен для определения ориентации ИСЗ-1 и расчета направления линии визирования "ИСЗ-1—ИСЗ-2", а другой (ОЭП-2) помещен в карданов подвес и осуществляет визирование ИСЗ-2.

ОЭП-2 не только визирует ИСЗ-2, но и измеряет координаты и звездные величины звезд, попавших в его поле зрения, после чего звезды распознаются, т.е. становятся известны их геоцентрические координаты. В расчет принимаются N самых ярких звезд ($N \ge 1$), относительно которых и измеряются угловые расстояния.

Навигационная задача решается с использованием классического метода наименьших квадратов (МНК), т.е. полагаются априори известными $\mathbf{q}_{0\,\mathrm{an}}$ — оценки орбит для ИСЗ-1 и ИСЗ-2 на некоторый момент времени (начало мерного интервала), формирование поправок к которым и составляет суть решения задачи.

После измерений, выполненных в течение мерного интервала, производится статистическая обработка результатов измерений, оценки параметров орбит итерационно корректируются:

$$\mathbf{q}_{0c} = \mathbf{q}_{0c-1} + \Delta \mathbf{q}_{0c} \,, \tag{1}$$

причем на нулевой итерации $\mathbf{q}_{00} = \mathbf{q}_{0an}$. Поправки рассчитываются по следующему алгоритму [1, 2]:

$$\Delta \mathbf{q}_{0c} = \left(\sum_{j=1}^{n} \mathbf{G}_{0j}^{T} \mathbf{P}_{j} \mathbf{G}_{0j}\right)^{-1} \left(\sum_{j=1}^{n} \mathbf{G}_{0j}^{T} \mathbf{P}_{j} \Delta \mathbf{L}_{j}\right),$$
(2)

где *с* — номер итерации; *n* — число навигационных сеансов на мерном интервале; $\mathbf{G}_{0j} = \mathbf{G}_j \mathbf{\Phi}_{0j}$ — градиентная матрица, т.е. матрица производных от текущей (на момент навигационного сеанса) измеряемой функции \mathbf{L}_{ij} по начальным параметрам опорной орбиты \mathbf{q}_{0c} , i = 1, ..., m, i — номер навигационного параметра, m — размерность вектора измеряемых параметров; \mathbf{G}_j — матрица производных от \mathbf{L}_{ij} по текущим параметрам опорной орбиты; $\mathbf{\Phi}_{0j} = \frac{\partial \mathbf{q}_j}{\partial \mathbf{q}_{0c}}$ — матрица баллистических (изохронных) производных; $\mathbf{P}_j = \mathbf{K}_{\mathbf{L}j}^{-1}$ — весовая матрица измерений, $\mathbf{K}_{\mathbf{L}j}$ — матрица вторых моментов погрешностей измерений в *j*-м навигационном ceance; $\Delta \mathbf{L}_j = \mathbf{L}_{j \, \mathrm{u}} - \mathbf{L}_{j \, \mathrm{p}}$ — вектор невязок измерений, разность между векторфункциями измеренных и рассчитанных навигационных параметров; $\mathbf{q} = \{\mathbf{r}, \mathbf{v}\}$, $\Delta \mathbf{q}_{0c} = \{\Delta \mathbf{r}_c, \Delta \mathbf{v}_c\}$, где \mathbf{r} — радиус-вектор положения КА, \mathbf{v} — вектор скорости, $\Delta \mathbf{r}_c$ и $\Delta \mathbf{v}_c$ поправки к ним.

Итерации завершаются при выполнении условия $|\Delta \mathbf{q}_{0c}| < \varepsilon$ (ε — малое число, характеризующее требуемую точность метода).

Имитационная модель, реализующая взаимно-угловой метод, является частью разработанного в ВКА им. А. Ф. Можайского программного комплекса расчетно-информационного обеспечения автоматизированной системы научных исследований методов и алгоритмов автономной навигации и ориентации космических аппаратов (АСНИ 1.1) [4].

Моделирование подтвердило предположение о том, что с увеличением количества измеряемых углов "ИСЗ—звезда" точность навигационных определений возрастает, хотя навигационная задача решается и при N = 1. В АСНИ 1.1 $N \le 5$. В табл. 1 демонстрируется зависимость точности навигационных определений от N при различных приборных погрешностях ОЭП для пар орбит, оскулирующие элементы (a — большая полуось, км; e — эксцентриситет; i — наклонение, …°; Ω — восходящий узел, …°; ω — аргумент перигея, …°; Θ — истинная аномалия, …°) которых представлены в табл. 2.

Таблица 1

Зависимость точности навигационных определений взаимно-углового метода от количества звезд (углов) для различных приборных погрешностей ОЭП

	01 F	соличества звезд (углов)	для различ	пых приос	рных погр	ешностен	JJII	
				Погр	решность из	мерений в (ОЭП	
	Вид ана	лизируемои		0,1″			5″	
	101 p	СШНОСТИ	N=1	N=3	N=5	N=1	N=3	<i>N</i> =5
		начальная точка	5,724	3,353	1,648	286,1	167,8	82,48
	$\Delta \mathbf{R}$, м	максимум	6,859	3,353	1,989	342,6	167,8	99,37
И <u>С</u> З 1		конечная точка	5,779	2,866	1,111	289,6	141,9	55,07
PICJ-1		начальная точка	0,172	0,112	0,059	8,577	5,596	2,962
	ΔV , см/с	максимум	0,346	0,130	0,077	17,27	6,505	3,832
		конечная точка	0.141	0,109	0,038	7,097	5,360	1,901
		начальная точка	14,53	1,286	0,296	725,9	64,16	14,80
	$\Delta \mathbf{R}$, м	максимум	14,53	3,380	1,421	725,9	168,7	70,78
ИСЗ-2		конечная точка	8,609	3,380	1,413	429,9	168,7	70,34
ncs-2		начальная точка	0,198	0,026	0,011	9,883	1,312	0,528
	ΔV , см/с	максимум	0,198	0,040	0,018	9,883	2,017	0,912
		конечная точка	0,147	0,040	0,018	7,338	1,977	0,912
Пр	имечани	е: начальная точка, макся	имум, конеч	ная точка (относятся к	мерному и	нтервалу (ч	аще всего
это вито	к ИСЗ-2).							

Параметры орбит ИСЗ-1 и ИСЗ-2

Таблица 2

	ИС	3-1	ИС	3-2
оскулирующие	опорная	фактическая	опорная	фактическая
элементы	орбита	орбита	орбита	орбита
а	10010	10012	25478	25478,05
е	0,01	0,01002	0,01	0,01001
i	85	86	63	62,999
Ω	0,001	0,003	120	120,003
ω	0,05	0,02	0,05	0,0503
Θ	0,001	0,00102	0,002	0,00201

В табл. 1 приведены погрешности определения оценок радиуса-вектора ($\Delta \mathbf{R}$) и вектора скорости ($\Delta \mathbf{V}$) орбиты в начальной и конечной точках мерного интервала, а также максимум отклонений. Как видно из этой таблицы, при увеличении числа звезд от одной до пяти точность оценок векторов положения ИСЗ возрастает в среднем в три раза, а точность оценок векторов скорости возрастает на порядок.

Используя предложенный метод, можно варьировать число навигационных параметров (N), не изменяя состав навигационных измерителей. При N>5, очевидно, возрастает точность метода. Введение ограничений на N вызывается только способностью ОЭП распознавать большое количество звезд и особенностями программной реализации алгоритма решения навигационной задачи.

Метод слежения. Для решения задач контроля космического пространства разработан основанный на взаимно-угловом методе навигации метод слежения, отличающийся тем, что в результате визирования ИСЗ-2 посредством ОЭП, помещенного в кардан, и измерения N углов "ИСЗ-2—звезда" ($N \ge 1$) уточняются оценки параметров орбиты визируемого аппарата (ИСЗ-2).

Точность визирования ИСЗ-2 при этом определяется точностью оценок параметров орбиты визирующего аппарата (ИСЗ-1) и погрешностями ОЭП.

Оценки орбиты ИСЗ-1 могут быть получены путем решения задачи навигации и ориентации по методу виртуальных измерений зенитных расстояний звезд [5, 6]. После получения этих оценок в течение двух—трех витков положение ИСЗ-1 без существенных потерь в точности может определяться на основе баллистического прогноза. При наличии на борту трех ОЭП, помещенных в карданов подвес, задачи определения собственной орбиты и слежения за ИСЗ-2 (определения его орбиты) могут решаться параллельно.

Функционирование автономной системы слежения также промоделировано в среде АСНИ 1.1 [4].

В табл. 3 сравнивается точность взаимного метода и метода слежения. Здесь и в других таблицах и $\Delta \mathbf{R}$ и $\Delta \mathbf{V}$ — погрешность оценок орбиты по векторам положения и скорости; ΔS , ΔT , ΔW — отклонение определения положения ИСЗ по направлениям радиусавектора, трансверсали и бинормали. Анализ данных табл. 3 дает основание полагать, что при средней квадратической погрешности (СКП) измерений в ОЭП ~0,1—1" расчет пяти углов по алгоритму метода слежения показывает более высокую точность оценок орбиты ИСЗ, чем при дополнительном измерении дальности с СКП в 10—15 м и измерении одного или двух углов по алгоритму взаимного метода. По крайней мере, это справедливо для указанных пар орбит, как при одинарных решениях, так и в статистике [1, 2].

Возможность решения задачи слежения определяется взаимным положением орбит аппаратов. На основе данных об опорных орбитах спутников предварительно формируется множество отрезков мерного интервала, на которых ИСЗ-2 наблюдаем с борта ИСЗ-1, т.е. не затенен Землей, не засвечен Солнцем или Луной, и на которых, следовательно, возможны измерения. Такие отрезки называются навигационными. Прогноз успешного решения навигационной задачи по способу слежения полагается положительным, если суммарная длина навигационных отрезков T_N составляет не менее 60 % от мерного интервала T, отрицательным в случае $T_N < 0,3T$. При $0,3T < T_N < 0,6T$ возможность решения задачи определяется расположением навигационных отрезков на мерном интервале; для положительного прогноза они должны располагаться как на его первой, так и на второй половине.

				Сран	знительная оп	ценка точности	і методов навигаі	ции взаи	імного и с	лежения	Ŧ			c nhnimn r
			Пары	орбит			Средняя	Ilorp	COLLINGTE C	пснок ој	обиты И	C3-2		
No.	E O	1	4C3-1	И	IC3-2	Измеряемые	квадратическая						Решение	Метод
	}	опорная	фактическая	опорная	фактическая	параметры	погрешность измерения	∆ К , м	$\Delta V, cm/c$	Δ <i>S</i> , м	$\Delta T,$ M	$\Delta W,$ m		навигации
	а	6299	6679,00001	10000	10004	1 угол	0,1"	116.4	101	202	1163	1 C	Опинарное	Взаимный
		0.01	0.0100001	ţ	0 101	дальность	10 M	110,1	1 ->, 1	<i>ر, ر</i> غ	<i>L</i> , <i>U</i> , 1	4,1	Одинарнос	рэакимпын
	e	0,01	0,0100001	0,1	0,101	5 yrjiob	0,1"	37,1	2,11	11,2	37,0	3,8	Одинарное	Слежения
	į	83,5	83,499991	56	56,01	1 угол	"I	487 7	30.6	1219	482 7	16.1	Олинарное	Взаимный
-						дальность	15 M		5,57 5,57	141,7	1,101	10,1	odmindo	
•	G	8,94	8,9400001	0	0,001	2 угла	1,0"	3187	105	81 U	318.0	10.0	опцании	Вазимний
	Ξ	-42.8	-42,80001	0	0 11	дальность	15 M	2,010	L, C I	01,0	0,010	10,7	Одинарнос	ДЗАИМНЫИ
	3))	62									
	Θ	18,2	18,20001	45	45	5 углов	1,0"	371,2	21,1	111,8	370,3	38,2	Одинарное	Слежения
	а	8800	8800,00001	25478	25478,05	1		8,14	0,09	0,45	-8,05	3,58	Cmommomer	
							0,1 10	-0,37	-0,007	0,01	-0,14	0,07	CIAINCIN-	Взаимный
	в	0,1	0,1000001,0	0,01	0,01001	дальность	IU M	-0,71	0,009	0,30	0,65	0,34	ческое	
	į	56	56.000001	63	62.999			5,5	0,08	2,31	5,14	2,04	Cronnorm	
c						5 углов	0,1"	0,68	0,005	0,08	-0,02	0,009	Claincin-	Слежения
1	G	0	0,0000001	120	119,997			0,51	0,006	0,22	0,49	0,17	ACKUC	
	6	0	0 00001	0	0	5 yrjiob	0,1"	1,93	0,02	0,84	1,92	0,48	Одинарное	Слежения
	3)				1 угол	0,1"			07 1			C	, ,
	Ð	0	0,000001	45	45	дальность	10 м	4,51	c0,0	8c,1	<i>66,5</i>	2,02	Одинарное	Взаимныи

Таблица 3

В табл. 4 представлены результаты моделирования метода слежения на 33 витках ИСЗ-2 для пары № 1 орбит, параметры которых содержатся в табл. 5. Здесь дополнительно представлены отклонения определения оценок скорости наблюдаемого спутника по направлениям радиуса-вектора (ΔV_S), трансверсали (ΔV_T) и бинормали (ΔV_W). Алгоритм предварительного анализа возможности решения навигационной задачи показал отрицательный результат шесть раз: витки 11-13 и 25-27. На этих витках осуществлялся баллистический расчет орбиты ИСЗ-2, причем без заметного снижения точности ее оценок.

Таблица 4

			пп метода сл	сжения	дага па					
	Максималь	ные отклонен	ия орбит ИСЗ	8-2 (м, см/с)		Числ	ю измер	ений		Descury
N⁰	ΔS	ΔT	ΔW	$\Delta \mathbf{R}$	<i>N</i> =1	<i>N</i> =2	<i>N</i> =3	<i>N</i> =4	<i>N</i> =5	решений
1	4,17	7,95	7,91	10,9	251	251	251	249	242	НЗ
2	1,03	0,363	<u>0,850</u> 1,71	0,992 2,47	233	233	233	232	229	НЗ
-	0,225	0,081 2,48	0,184 3,63	0,268 4,29	255	255	255	252		
3	0,207	0,0927	0,392	0,433	257	257	256	252	241	H3
4	0,268 0,174	0,0107	0,333	0,347	245	245	244	239	229	НЗ
5	0,691 0,148	2,00 0,0732	0,861 0,0931	2,13 0,161	258	258	258	255	244	H3
6	0,629 0,362	3,93 0,0614	5,09 0,552	5,91 0,652	255	255	254	251	239	H3
7	0,923 0,407	3,81 0,0857	4,52	5,31 0,606	263	263	263	255	232	НЗ
8	0,495	3,95	4,34	5,55	203	203	199	195	181	НЗ
9	0,814	8,69 0.0625	12,8	14,8	180	180	176	165	146	НЗ
10	0,650	6,14	1,58	1,03	169	168	159	154	143	НЗ
11	0,608	0,0542 10,8	<u>1,19</u> 11,0	1,32 14,4						ГП
11	1,23	0,0716	1,18	1,61						DII
12	2,43	0,0957	1,18	23,8 2,52	—	—	—	—	—	БП
13	1,86 4,20	38,1 0,131	10,9 1,17	39,3 4,24				_		БП
14	4,98 0,715	10,4 0,489	5,32 0,575	11,0 0,894	158	157	157	156	147	H3
15	3,20 0,549	6,70 0,321	10,2 1,10	10,9 1,18	234	234	234	233	230	НЗ
16	1,37 0,361	3,50 0,114	8,84 0,952	8,98 0,996	233	233	232	223	212	НЗ
17	0,784	2,29	1,29 0,140	2,47	237	237	237	232	219	НЗ
18	0,531	2,61 0,0342	3,87	4,34	234	234	234	231	229	НЗ
19	1,10	3,79 0,117	3,21	4,42	262	262	258	256	245	НЗ
20	0,917	6,14 0,0797	7,96	9,75	241	241	240	235	224	НЗ
21	0,755	9,56	12,6	15,2	269	268	268	265	253	НЗ
22	0,941 0,991 0,720	6,68 0,0829	1,37 8,92 0.963	1,64 10,5 1.17	215	215	211	201	179	НЗ

n

Автономная астрономическая система навигации и слежения

	пробыжение ниблицы 4										
	Максималь	ные отклонен	ия орбит ИСЗ	-2 (м, см/с)		Числ	о измер	ений		Режим	
N⁰	ΔS	ΔT	ΔW	$\Delta \mathbf{R}$	<i>N</i> =1	<i>N</i> =2	<i>N</i> =3	N=4	<i>N</i> =5	решений	
	ΔV_S	ΔV_T	ΔV_W	$\Delta \mathbf{V}$	19-1	11-2	11-5	1 v-4	11-5	I	
23	1,55	8,70	11,8	13,5	177	177	174	159	136	НЗ	
	0,927	0,132	1,27	1,49	1,,			,	100		
24	1,55	11,2	15,3	18,7	175	175	169	157	133	НЗ	
27	1,09	0,148	1,65	1,88	175	175	107	137	155	115	
25	1,95	15,2	15,3	20,9						ЕП	
23	1,53	0,170	1,64	2,12						DII	
26	2,59	25,2	15,2	29,0						ЕП	
20	2,63	0,200	1,63	2,87						DII	
27	3,30	40,5	15,2	42,9						ЕП	
21	4,30	0,232	1,63	4,33						DII	
28	2,99	6,82	7,59	10,1	252	252	251	240	220	Ц3	
20	0,749	0,257	0,812	0,860	232	232	231	249	230	ПЭ	
20	1,14	2,31	6,22	6,35	237	237	237	234	220	ЦЗ	
23	0,232	0,110	0,669	0,684	231	237	231	234	223	115	
20	0,755	2,82	6,25	6,80	254	254	253	251	240	Ц2	
50	0,233	0,0644	0,675	0,703	234	234	233	231	240	ПЭ	
21	0,271	1,60	1,63	2,23	257	257	256	253	2/2	Ц3	
51	0,149	0,0187	0,177	0,217	237	237	230	235	245	ПЭ	
22	0,400	2,37	2,67	3,30	267	267	267	264	256	Ц 2	
32	0,215	0,0376	0,290	0,356	207	207	207	204	230	СП	
22	0,576	2,49	1,32	2,49	247	246	245	228	224	Ц2	
33	0,203	0,0590	0,144	0,248	247	240	243	230	224	СП	
	Примечан	н и е : H3 — на	вигационная	задача, БП —	баллист	гически	й прогно	03.			

Таблица 5

		пара	истры пар	opont nC.	р-т и исэ-	2		
				№ п	ары			
Оскулирующие элементы		1		2		3	2	1
	ИСЗ-1	ИСЗ-2	ИСЗ-1	ИСЗ-2	ИСЗ-1	ИСЗ-2	ИСЗ-1	ИСЗ-2
а	7378	21400	6678	7000	8800	25478	6679	10000
е	0,01	0,01	0,01	0,01	0,1	0,01	0,01	0,1
i	86	63	86	56	56	63	83,5	56
Ω	0,003	120	0	120	0	120	8,94	0
ω	0,01	2	0	0	0	0	-42,8	0
Θ	0,008	3	0	45	0	45	18,2	45

 $\Pi_{2} = \Pi_{2} = \Pi_{2$

Направление линии визирования "ИСЗ-1—ИСЗ-2" определяется после расчета геоцентрической ориентации корпуса ИСЗ-1, который производится на основе измерений в ОЭП-2. В [7] показано, что в результате измерений в ОЭП, жестко закрепленном на корпусе ИСЗ, определяется ориентация спутника в геоцентрической экваториальной инерциальной системе координат (ГЭИСК), т.е. рассчитывается матрица **М** перехода из ГЭИСК в связанную систему координат (ССК). Далее по известным координатам ИСЗ-1 (x_1, y_1, z_1) и опорным координатам ИСЗ-2 (x_2, y_2, z_2) определяется направляющий вектор искомой линии визирования в ГЭИСК **а** (a_x, a_y, a_z):

$$a_x = \frac{x_{1-}x_2}{d}, \ a_y = \frac{y_{1-}y_2}{d}, \ a_z = \frac{z_{1-}z_2}{d},$$

ния 631 Продолжания таблицы и где $d = ((x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2)^{1/2}$.

 $d = ((x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2)^{1/2}$. После этого рассчитывается направляющий вектор линии визирования в ССК $\mathbf{a}'(a'_{X_{CCK}}, a'_{Y_{CCK}}, a'_{Z_{CCK}})$:

 $\mathbf{a}' = \mathbf{M}\mathbf{a}$.

Углы между вектором **a**' и осями $X_{\rm CCK}$ и $Z_{\rm CCK}$ равны $\lambda_1 = \arccos a'_{X_{\rm CCK}}$, $\rho_1 = \arccos a'_{Z_{\rm CCK}}$. Значения λ_1 , ρ_1 подаются на двигатели рамок карданова подвеса для физического ориентирования оптической оси ОЭП-2 в точку нахождения ИСЗ-2.

В табл. 6 представлена точность навигационного определения данных, полученных по методу слежения. Благодаря стабильно высокой точности навигационных определений метод слежения перспективен для использования в системах автономной навигации и ориентации, в первую очередь, для ИСЗ наблюдения.

Максима	льные ра	схождения	орбит ИСЗ	-2 за 35 вит	ков
№ пары орбит (см. табл. 5)	Δ R , м	ΔV, см/с	Δ <i>S</i> , м	Δ <i>Т</i> , м	Δ <i>W</i> , м
1	14,5	18,4	6,97	14,2	4,54
2	29,1	3,28	6,88	18,4	27,7
3	22,4	25,3	9,92	22,0	11,8
4	14,3	69,5	4,46	14,1	4,07

Метод слежения.

Таблица б

Выявление факта изменения орбиты наблюдаемого аппарата. Для предложенного авторами метода слежения разработан алгоритм решения задачи оперативного выявления факта изменения орбиты ИСЗ-2, причем эти изменения могут быть относительно незначительными. Для этого требуется высокоточное решение навигационной задачи по методу слежения (порядка единиц-десятков метров по положению и соответственно единиц-десятков миллиметров в секунду по модулю вектора скорости), что, в свою очередь, предполагает и аналогичную точность выработки оценок орбиты ИСЗ-1.

В настоящей работе предложены два способа решения задачи по выявлению изменения орбиты ИСЗ-2, на основе анализа динамики сумм поправок к опорной орбите по радиусувектору ($\Delta \mathbf{r}$) и модулю вектора скорости ($\Delta \mathbf{v}$), а также сумм абсолютных значений невязок измерений за мерный интервал (µ) при решении навигационной задачи по алгоритму (1), (2):

$$\Delta \mathbf{r} = \sum_{c} \Delta \mathbf{r}_{c} , \ \Delta \mathbf{v} = \sum_{c} \Delta \mathbf{v}_{c} , \ \mu = \sum_{j} \sum_{i} \left| \Delta \mathbf{L}_{ij} \right|.$$
(3)

1. Традиционный набор статистики в модели. Разработаны два варианта реализации этого способа:

— анализируются поправки $\Delta \mathbf{r}$ на текущем мерном интервале относительно $\Delta \mathbf{r}$ двух предшествующих интервалов (первый критерий) и текущая сумма невязок µ в сравнении с аналогичной суммой на предыдущем интервале (второй критерий);

— сравниваются $\Delta \mathbf{r}$, $\Delta \mathbf{v}$ (первый критерий) и μ (второй) с аналогичными суммами, полученными на предыдущем мерном интервале.

Для выявления импульса предусмотрены два режима расчетов — совместный (A) и раздельный (Б). В режиме А при завершении текущего мерного интервала наличие импульса фиксируется, когда оба критерия превышают установленные пороги, при режиме Б принимается в расчет превышение соответствующего порога только одним из критериев.

На основе моделирования были выбраны диапазоны значений порогов для первого критерия 2,0—3,0, для второго — 1,25—2,5, в зависимости от пары орбит. Результаты выявления фактов изменения орбиты ИСЗ-2 по первому способу представлены в табл. 7. В графе "Фиксация" значком "+" отмечен формируемый алгоритмом сигнал успешного выявления изменения орбиты, здесь же после запятой указано число ложных сигналов во всей статистике из 35 решений соответствующей записи базы решений. В графе "Видимость" приведена интегрированная характеристика возможности решения навигационной задачи по всем мерным интервалам этой записи: "различная" означает, что часть решений вынужденно была заменена баллистическим прогнозом, на этих витках возможное изменение орбиты ИСЗ-2 не могло быть установлено.

Таблица 7

N.		Парам	етры	D	Импульс,	Вклк	очение	D	Фик-
JN⊇	03	опорных	ороит	Видимость	м/с	DUTCH	CASHOLI	Режим	сация
	05	ncj-i	nc5-2	1		5	<u>10</u>		+
	a	6679	10000		50	10	10	А	+
	e	0.01	0.1			25	10	*-	+, 0
	;	0,01	56.0			5	10		+
1	l	03,5	30,0	Полная	30	10	10	А	+
	Ω	8,94	0			25	10		+, 0
	ω	-42,8	0			5	10		+
	θ	18,2	45,0		20	10	10	A	+
 		-		1	 	25	10		+, 0
	a	7000	10000		50	4	10	•	+
	0	0.015	0.1		50	28	10	А	+ 0
	е.	0,015	0,1			4	50		
2	i	83,5	56,0	Полная	40	15	100	А	+
	Ω	0	0			28	10		+, 0
	ω	0	0			4	10		-
	θ	18.2	45.0		30	15	10	А	-
	Ť	10,-	,.	<u> </u>		28	10		-,0
	a	6678	7000		50	8	10		+
	и	0070	7000		50	20	12	Ь	+
	е	0,01	0,01			<u> </u>	10		+, 0
3	i	86	63	Различная	40	20	12	Б	+
5	Ω	0	120	1 usin man	ντυ	33	13	U U	+. 2
	ω	0	0	F		8	10		+
	A	Ū.	0		40	20	12	А	+
	U	U	U			33	13		+, 0
		((0))	25479			11	10		+
	а	6680	25478		50	21	10	Б	+
	е	0,01	0,01			31	10		+,0
4	i	86	63,5	Полияя	40		10	F	+
4	Ω	0	0	полная	40	31	10	D	+ 0
	ω	_15	_34			11	10		+
	0	-15	-57		30	21	10	Б	+
	θ	100	45			31	10		+, 0

Выявление в БКУ изменения орбиты ИСЗ-2. Способ 1, вариант 1

Π

							11000	лжение та	юлицы /
N⁰		Парамо опорных	етры орбит	Видимость	Импульс,	Вклк	очение	Режим	Фик-
	ОЭ	ИСЗ-1	ИСЗ-2		M/C	витки	сеансы		сация
						11	10		+
	а	7378	25478		50	21	10	Б	+
	е	0,01	0,01			31	10		+, 0
	i	86	63.5			11	10		+
5	i O	100	05,5	Полная	30	21	10	Б	+
	Ω	120	0			31	10		+, 1
	ω	-15	-34			11	10		+
	θ	100	45		20	21	10	А	+
	Ŭ	100	10			31	10		+, 0
						6	10		+
	а	7000	8238		50	26	15	А	+
	е	0,01	0,001	Различная		34	100		+, 0
	i	56	104			6	10		+
6		1.00	20.5		40	26	15	А	+
	Ω	1,20	29,5			34	100		+, 0
	ω	-50	0			6	10		+
	θ	0	0		30	26	15	А	-
	Ť	Ť	-			34	10		+, 0
		-	0.0.50			6	10		+
	а	7000	8258		50	26	15	А	+
	е	0,01	0,001			34	100		+, 1
	i	56	104 1			4	10		+
7	, ,	120	200.70	Полная	30	26	15	А	+
	Ω	120	209,78			34	100		-, 0
	ω	-50	51,4			4	10		+
	θ	0	0		20	26	15	А	+
	Ŭ	Ŷ	`			34	100		+, 0

2. Бортовой способ разработан на основе двух параллельно работающих программ. Первая, полетная программа, осуществляет расчет уточненной опорной орбиты (УОО) ИСЗ-2 согласно (1), (2) на основе априорных данных об орбите и модели бортовых измерений. Вторая, модельная программа, реализует исключительно модельный алгоритм, в ней опорная и истинная орбиты представляются выработанной в полетной программе УОО, на основе которой моделируются измерения; импульсы, подаваемые для изменения орбиты ИСЗ-2, в ней отсутствуют.

В динамике набора статистики взаимодействие полетной и модельной программ происходит следующим образом. В течение первого витка работает только полетная программа, рассчитывающая УОО. На втором и последующем витках функционируют обе программы параллельно. Модельная программа в процессе решения навигационной задачи вырабатывает базовые значения описанных в (3) критериев, с которыми сравниваются результаты аналогичных расчетов полетной программы. При превышении их по первому критерию в три и более раза, а по второму критерию — в 1,25 и более раз фиксируется факт изменения орбиты ИСЗ-2.

Результаты расчетов по бортовому способу представлены в табл. 8 и 9. Табл. 8 составлена для четвертой пары, но с изменением направления импульса: S — радиус-вектор орбиты, T — трансверсаль, W — бинормаль; табл. 9 — для второй и четвертой пар орбит из табл. 5, импульс направлен по трансверсали.

$^{\infty}$	
Таблица	

	ксания		режим	р	+	+	+	Ι	+	+	+	+	+	+	+	+	+	
	Фu	4	мижац	A	+	Ι	+	Ι	+	+	Ι	+	+	+	Ι	Ι	+	
			ln	н ₂	3,21	1,28	1,66	1,18	21,55	7,76	1,17	2,06	1,85	1,36	1,22	1,19	35 I	
	Критерий		Δu_1	Δv_2	5,90	2,67	8,19	0,62	10,24	24,48	5,62	5,48	15,33	5,76	2,71	1,62	3 60	
co6 2			Δr_1	Δr_2	18,68	1,48	5,61	4,33	23,71	18,08	4,45	4,49	7,61	5,29	3,54	3,21	3.71	
3-2. Спо	цельная	Hble bl		μ ₂ , "	223	223	223	223	223	223	223	223	223	223	223	223	219	
иты ИС.	амма мод	зигацион ıapaметрı	ννς	MM/C	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0.35	
ения орб	IIporp:	Нае	Λr_{2}	M	1,59	1,59	1,59	1,59	1,59	1,59	1,59	1,59	1,59	1,59	1,59	1,54	2.85	
-1 измен		Hble J		μ ₁ , "	715	285	371	263	4807	1731	262	460	413	304	271	266	301	
е на ИСЗ		навигацион параметр	авигационн параметры		MM/C	1,24	0,56	1,72	0,13	2,15	5,14	1,18	1,15	3,22	1,21	0,57	0,34	1.26
ирование	łая		нави пај	Λr .	N N	29,7	2,35	8,92	6,88	37,7	28,74	7,08	7,14	12,10	8,41	5,63	5,11	10,56
Фикс	ма полетн		ача	сеанс	15	450	100	15	15	100	400	100	150	200	225	15	I	
	Програм	ç	топ	виток	2	2	2	2	2	2	2	2	2	2	2	2	3	
		импуль	MOJIVIE	M/C	10	5	3	1	10	5	3	1	10	5	3	1	5	
				ориентация	Т	T	T	T	S	S	S	S	М	М	М	М	T	
		Ŷ	1		1	2	3	4	5	9	7	8	6	10	11	12	13	

		Прогј	рамма по	олетная			Пр м	оограм одельн	ма ая	т	c	0	æ	
No	И	мпульс		нави	ацион	ные	нави	гацион	ные	ł	Сритери	И	Фикс	ация
51-	молупь	под	ача	пар	раметр	ы	па	раметр	ы					
	м/с	виток	сеанс	$\Delta r_1,$ M	Δ <i>v</i> ₁ , мм/с	μ1, "	Δ <i>r</i> ₂ , м	Δ <i>v</i> ₂ , мм/с	μ2, "	$\Delta r_1 \Delta r_2$	$\frac{\Delta v_1}{\Delta v_2}$	$\mu_1 \over \mu_2$	режим А	режим Б
1	3	2	100	8,92	1,72	371	1,59	0,21	223	5,61	8,19	1,66	+	+
1	10	8	400	0,88 18,75	0,25 2,46	313 410	1,95 0,63	0,11 0,81	278 320	0,45 29,7	9,27 3,01	1,12 1,28	+	+
n	3	2	100	8,92	1,72	371	1,59	0,21	223	5,61	8,19	1,66	+	+
2	10	7	25	21,6	3,17	625	1,91	0,10	278	10,3	31,7	2,25	+	+
	3	2	100	5,67	2,73	320	4,88	3,62	263	1,16	0,75	1,25	_	+
3	10	8	400	10,83 17,62	9,07 7,32	260 656	7,72 6,09	5,54 4,19	212 428	1,40 2,89	1,61 1,74	1,22 1,29	_	- +
4	3	2	15	3.85	1,94	304	4,88	3,62	263	0,79	0,53	1,16	_	_
4	10	7	25	10,62	3,75	485	6,74	6,00	206	1,57	0,62	2,35	-	+
5	5 5	2 7	15 25	7,34 12,09	3,38 7,96	389 300	4,88 7,51	3,62 5,63	263 224	1,50 1,61	0,93 1,41	1,43 1,34		++++
6	3	2	50	17,30	0,273	125	6,45	0,126	99,4	2,68	2,17	1,26	_	+
0	10	7	200	14,26	0,086	396	6,21	0,126	133,0	2,30	0,68	2,98	-	+
7	1	2	50	4,64	0,074	128	6,44	0,127	99,4	0,72	0,58	1,29	-	+
-	10	5	12	47,90	0,730	527	3,88	0,047	128,0	12,35	15,5	4,12	+	+
8	3	2	50 200	82,80	2,44	252	32,35	3,67	91,5 100.0	2,56	0,66	275,0	—	+
	10	5	200	230,2	24,99	3373	122,4	0,15	109,0	1,00	3,07	30,90		т
9	3 10	2 5	8 12	143,1 241,0	5,09 17,66	365 4732	32,35 64,10	3,67 4,19	91,5 115,0	4,42 3,76	1,39 4,21	3,99 41,15	+	++
10	5	2	8	31,30	2,39	261	32,35	3,67	91,5	0,96	0,65	2,85	_	+
10	5	5	12	571,5	41,6	1713	38,40	3,67	110,6	14,88	11,34	15,49	+	+
	Примеч	ание:	ориента	ция по с	си Т.									

Фиксирование на ИСЗ-1 изменения орбиты ИСЗ-2. Способ 2

Таблица 9

Анализ табл. 7—9 показывает, что первый способ, более простой для программной реализации, позволяет уверенно определять изменение орбиты ИСЗ-2 лишь при относительно больших импульсах (20 м/с и более) и требует тонкой настройки порогов, в зависимости от пар орбит, для исключения ложных сигналов. Второй способ гораздо чувствительнее к величине импульса (1—3 м/с) и в нем практически отсутствует ложное выявление сигналов, поскольку в нем на каждом витке сравниваются два решения задачи по одному и тому же алгоритму с близкими исходными данными. При отсутствии импульсов значения критериев будут близки, а их отношения далеки от пороговых значений. Однако по сравнению с первым этот способ требует значительного усложнения программы.

Время выявления импульса зависит от времени его подачи относительно начала мерного интервала (витка). Если этот момент выпадает на первую половину или середину интервала, импульс фиксируется по его окончании, в противном случае — в течение следующего интервала или, в крайнем случае, по его завершении (табл. 8, строки 2 и 13, 7 и 14, 11 и 15).

Используя оба предложенных метода — взаимно-угловой и слежения, на каждом навигационном сеансе после определения ориентации ИСЗ-1 в ГЭИСК возможно определить на основе данных о его орбите ориентацию и в подвижной орбитальной системе координат [7—9]. Таким образом, предлагаемая автономная астрономическая система является многофункциональной; она обеспечивает решение задач навигации и ориентации собственного ИСЗ, выполнение функций формирования высокоточных навигационных определений и выявления фактов изменения орбиты наблюдаемого спутника. Выполнение всех функций обеспечивается использованием одних и тех же измерителей — ОЭП.

Предлагаемая система, основанная на пассивных измерениях, характеризуется повышенным уровнем автономности, устойчивости и помехозащищенности, не требует для своей реализации дополнительных полей и излучений. Разработанные методы могут быть использованы в автономных системах наблюдения за космическими объектами.

СПИСОК ЛИТЕРАТУРЫ

- 1. Кузнецов В. И., Данилова Т. В. Автоматизированная система исследований методов и алгоритмов автономной навигации и ориентации космических аппаратов: Учеб. пособие. СПб: ВКА им. А. Ф. Можайского, 2006.
- 2. Кузнецов В. И. Автоматизированная система научных исследований методов и алгоритмов автономной навигации и ориентации космических аппаратов. СПб: ВКА им. А. Ф. Можайского, 2010.
- 3. *Кузнецов В. И., Данилова Т. В.* Моделирование метода взаимной автономной навигации космических аппаратов: новые результаты // Изв. вузов. Приборостроение. 2005. Т. 48, № 10. С. 20—27.
- 4. Свид. о гос. рег. программ для ЭВМ № 2013617182 РФ. Программный комплекс расчетно-информационного обеспечения автоматизированной системы научных исследований методов и алгоритмов автономной навигации и ориентации космических аппаратов (АСНИ 1.1) / В. И. Кузнецов, Т. В. Данилова, М. А. Архипова. Заявл. 19.06.2013; опубл. 05.08.2013.
- 5. *Кузнецов В. И., Данилова Т. В.* Система автономной навигации и ориентации ИСЗ, основанная на виртуальных измерениях зенитных расстояний звезд // Космические исследования. 2011. Т. 49, № 6. С. 551—562.
- 6. Пат. 2454631 РФ. Способ автономной навигации и ориентации космических аппаратов на основе виртуальных измерений зенитных расстояний звезд / В. И. Кузнецов, Т. В. Данилова, Д. М. Косулин. Заявл. 28.10.2010.
- 7. Данилова Т. В., Архипова М. А. Определение ориентации корпуса космического аппарата в геоцентрической экваториальной инерциальной системе координат на основе астроизмерений при отсутствии данных о параметрах орбиты // Изв. вузов. Приборостроение. 2013. Т. 56, № 7. С. 13—20.
- 8. Данилова Т. В. Автономный метод определения оценок параметров орбиты и ориентации космического аппарата в пространстве при отсутствии априорной информации // Изв. вузов. Приборостроение. 2014. Т. 57, № 5. С. 30—38.
- 9. Пат. 2013128117 РФ. Способ автономного определения орбиты и ориентации корпуса космического аппарата в пространстве при отсутствии априорной информации / В. И. Кузнецов, Т. В. Данилова, Д. М. Косулин, М. А. Архипова. Заявл. 18.06.2013; опубл. 27.12.2014. Бюл. № 36.

Сведения об авторах			
Владислав Иванович Кузнецов		д-р техн. наук; ВКА им. А. Ф. Можайского, 34 отдел военного институ-	
		та; E-mail: vikilz@mail.ru	
Тамара Валентиновна Данилова		канд. техн. наук; ВКА им. А. Ф. Можайского, 34 отдел военного ин-	
		ститута; E-mail: danitoma58@yandex.ru	

Рекомендована ВКА

Поступила в редакцию 05.11.14 г.

Ссылка для цитирования: *Кузнецов В. И., Данилова Т. В.* Автономная астрономическая система навигации и слежения // Изв. вузов. Приборостроение. 2015. Т. 58, № 8. С. 625—638.

AUTONOMOUS ASTRONOMICAL SYSTEM FOR NAVIGATION AND TRACKING

V. I. Kuznetsov, T. V. Danilova

A. F. Mozhaysky Military Space Academy, 197198, Saint Petersburg, Russia E-mail: danitoma58@yandex.ru

An autonomous astronomical system for artificial satellite navigation and orientation is presented. The system makes use of "satellite-star" angle measurements with optical-electronic instruments. A reciprocal angles method and a tracking method are developed to solve the navigation problem. In both the methods, the line-of-sight direction is calculated from obtained estimates of the satellite orientation. Along with generation of high-precision navigation data on the satellite under observation, the tracking method reveals the facts of the satellite orbit change (maneuver) even under weak pulse (1—3 m/s). Results of simulation testing of the developed methods are presented.

Keywords: autonomous navigation, methods of navigation, stellar measurements, star recognition, optical-electronic device, orbit change.

		Data on authors
Vladislav I. Kuznetsov	—	Dr. Sci.; A. F. Mozhaysky Military Space Academy, Department 34 of
		the Military Institute; E-mail: vikilz@mail.ru
Tamara V. Danilova	—	PhD; A. F. Mozhaysky Military Space Academy, Department 34 of the Military Institute; E-mail: danitoma58@yandex.ru

Reference for citation: *Kuznetsov V. I., Danilova T. V.* Autonomous astronomical system for navigation and tracking // Izvestiya Vysshikh Uchebnykh Zavedeniy. Priborostroenie. 2015. Vol. 58, N 8. P. 625—638 (in Russian).

DOI: 10.17586/0021-3454-2015-58-8-625-638