ГРАДИЕНТНАЯ ЛИНЗА С ПОЛОЖИТЕЛЬНОЙ КРИВИЗНОЙ ПОЛЯ ИЗОБРАЖЕНИЯ В СХЕМАХ ОБЪЕКТИВА ЭНДОСКОПИЧЕСКОГО ТИПА И ОБЪЕКТИВА PIN HOLE

А. Л. СУШКОВ

Московский государственный технический университет им. Н. Э. Баумана, 105005, Москва, Россия E-mail: ale-sushkov@yandex.ru

Представлены результаты исследования конструкции линзы и градиента показателя преломления, позволяющие получить нетипичную коррекцию кривизны поля изображения в положительной линзе. Полученные результаты использованы при конструировании оптических схем объектива эндоскопического типа и объектива Pin Hole.

Ключевые слова: линза, объектив, радиальный градиент показателя преломления, кривизна поля изображения

Согласно теории аберраций оптических систем (OC) [1, 2] плоский предмет, перпендикулярный к оптической оси, изображается ОС в виде кривой поверхности вследствие наличия аберрации кривизна поля изображения. При малых углах поля поверхность изображения является сфероидом, радиус кривизны которого можно определить по известной формуле [2] $R_P = -1/S_{IVE}$, где S_{IVE} — коэффициент аберрации кривизна поля изображения согласно теории аберраций Зейделя.

При равенстве нулю коэффициента $S_{\rm IV}$ изображение будет плоским. Положительные линзы, как правило, имеют отрицательную меридиональную и сагиттальную кривизну поля изображения, а отрицательные линзы — положительную. При определенном сочетании положительных и отрицательных линз в оптической системе можно получить плоское поле изображения. Однако принято считать, что в простейших оптических системах, состоящих из одиночной линзы в воздухе или склеенного из двух одиночных линз блока, эта аберрация неисправима.

Современными требованиями к оптическим приборам предписывается минимизация их массогабаритных параметров, что, как следствие, приводит к необходимости уменьшения числа линз, входящих в оптическую систему.

Представляется, что один из путей реализации этой концепции — применение при конструировании оптических систем радиально-градиентных линз.

В работе [3] показано, что, воспользовавшись формулами для коэффициентов аберраций третьего порядка градиентных оптических систем на начальном этапе синтеза, можно получить значение коэффициента *S*_{IVE} (естественная нормировка параметров вспомогательных лучей), близкое к нулю, т.е. изображение в первом приближении будет плоским. Однако представляет интерес конструкция линзы, в которой кривизна поля изображения имеет положительное значение. У одиночных положительных однородных тонких линз кривизна поля изображения отрицательная, поэтому получение положительной кривизны является новой задачей в прикладной оптике, которая до сих пор не была исследована.

Одиночную линзу с радиальной неоднородностью показателя преломления (ПП) можно представить в виде эквивалентного по фокусному расстоянию компонента, состоящего из двух линз в воздухе [3]; первая линза такого компонента — однородная с радиусами кривиз-

ны r_1 , r_2 и толщиной d, вторая — плоскопараллельная пластинка той же толщины с градиентным показателем преломления (линза Вуда), в которой распределение показателя преломления (РПП) задается одной из двух функций:

$$n(y) = n_{00} + n_{10}y^2 + n_{20}y^4 + \dots,$$

$$n^2(y) = n_{00}^2 (1 - g^2 y^2 + h_4 g^4 y^4 + h_6 g^6 y^6 + \dots).$$
(1)

Оптическая сила такой линзы равна сумме оптических сил, обусловленных кривизной поверхностей однородной линзы, и оптической силы, обусловленной неоднородностью показателя преломления:

$$\Phi = \overline{\Phi} + \widetilde{\Phi}.$$
 (2)

Если градиентная среда является фокусирующей, т.е. $n_{10} < 0$ и $\tilde{\Phi} > 0$, то для исправления кривизны поля оптическая сила однородной линзы должна быть отрицательной [3].

Для линзы малой, но конечной толщины известно соотношение [3], связывающее фокусное расстояние f', толщину d, радиус кривизны первой поверхности линзы r_1 и величину коэффициента n_{10} , при котором линза имеет заданное значение коэффициента $S_{IV \kappa}$ (каноническая нормировка):

$$n_{10} = \frac{\frac{(n_{00} - 1)}{r_1^2 n_{00}} - \frac{1/f'}{d(n_{00} - 1)} - \frac{S_{IV\kappa}}{f'} \left(\frac{1}{r_1} - \frac{n_{00}}{d(n_{00} - 1)}\right)}{\frac{2}{n_{00}} + \frac{2d}{r_1 n_{00}^2}},$$
(3)

где *n*₀₀ — показатель преломления на оси линзы.

Формула (3) дает первое приближение для расчета требуемого значения коэффициента *S*_{IVк}, точность ее увеличивается с уменьшением толщины линзы.

В табл. 1 приведены результаты расчета по формуле (3) параметров радиальноградиентной линзы по заданным значениям n_{00} , r_1 , d, $S_{IV\kappa}$ и f'. В таблице приняты следующие обозначения: f'_G , f'_H — фокусные расстояния линзы при наличии и отсутствии градиента ПП; t — константа распределения показателя преломления радиально-градиентной среды $(t=(-2n_{10}/n_{00})^{0.5}, \text{ мм}^{-1})$; s_p — удаление входного зрачка, y' — диагональ изображения, Z'_m , Z'_s астигматические отрезки, $S_{IVH\kappa}$ — коэффициент кривизны поля линзы с однородным ПП в канонической нормировке параметров вспомогательных лучей.

												10	<i>i0.111iju</i> 1
№ п/п	$S_{IV\kappa}$	<i>r</i> ₁ , мм	<i>r</i> ₂ , мм	<i>d</i> , мм	f_G' , mm	<i>n</i> ₁₀ , мм	<i>t</i> , mm ⁻¹	<i>S</i> _{<i>p</i>} , мм	у', мм	Z'_m , мм	Z'_s , мм	$S_{IVH\kappa}$	f'_H , mm
					<i>n</i> ₀₀	= 1,7849, f = 3	0,0 мм, @ ·	= 12°					
1	-0,4	-4,356	-7,5169	1,55	28,666	-0,02992	0,183114	-2,0	-6,350	-0,740	-0,081	0,714	-16,83
2	-0,3	دد	-6,469	"	29,222	-0,02362	0,162687	"	دد	1,05	0,477	0,826	-25,07
3	-0,2	دد	-5,6788	دد	29,64	-0,01732	0,139295	"	دد	2,226	0,807	1,155	-49,15
4	-0,1	"	-5,060	دد	29,95	-0,01101	0,111082	"	"	2,580	0,873	16,95	-1205,6
5	0,0	دد	-4,563	"	30,06	-0,0047079	0,072631	"	دد	2,03	0,650	-0,245	53,46
6	0,1	دد	-4,1548	"	29,967	0,00159625	0,042292	"	دد	0,535	0,120	0,127	26,119
7	0,2	دد	-3,8137	"	29,730	0,0079004	0,094088	"	دد	-1,762	-0,721	0,248	17,293
8	0,3	دد	-3,5244	"	29,334	0,0142046	0,12616	"	دد	-4,637	-1,866	0,266	15,944
	$n_{00} = 1,6000, f' = 20,0 \text{ MM}, \omega = 18^{\circ}$												
9	0,5	-6,3736	-4,1059	2,0	19,756	0,0047970	0,077436	-4,6	-6,156	-9,717	-4,558	0,64	14,453
10	0,4	دد	-5,017	دد	20,088	-0,0026181	0,057206	"	دد	0,282	-0,157	0,402	25,298
11	0,3	دد	-6,4478	"	20,160	-0,0100300	0,111971	"	دد	5,422	1,341	-0,068	101,35
12	0,2	دد	-9,020	"	19,971	-0,0174500	0,147690	"	دد	0,931	0,154	0,872	-50,52
13	0,1	دد	-15,008	"	19,536	-0,0248637	0,176294	"	دد	-6,732	-2,949	0,684	-20,22
14	0,5	6,3736	10,136	دد	20,080	-0,00202286	0,050285	4,6	دد	-0,458	-0,463	0,521	23,858
15	0,3	"	6,3246	2,0	20,160	-0,00989120	0,111193	4,6	"	1,663	0,271	-0,043	95,84

Taganna 1

											Продол	лжение	табл. 1
№ п/п	$S_{IV\kappa}$	<i>r</i> ₁ , мм	<i>г</i> ₂ , мм	<i>d</i> , мм	f_G' , mm	<i>n</i> ₁₀ , мм	<i>t</i> , mm ⁻¹	<i>S</i> _{<i>p</i>} , мм	у', мм	Z'_m , мм	Z'_s , мм	$S_{IVH\kappa}$	f'_H , мм
16	0,1	"	4,5964	دد	19,860	-0,01775954	0,148994	8,6	دد	11,187	2,474	1,081	-47,53
17	دد	"	"	دد	"	دد	دد	4,6	دد	1,998	0,488	دد	"
18	دد	"	"	دد	"	"	دد	3,6	دد	0,741	0,135	"	"
19	0,0	"	4,044	دد	19,594	-0,02169	0,164658	دد	دد	0,599	0,157	0,9217	-27,19
20	-0,1	دد	3,6099	دد	19,240	-0,02562788	0,178982	"	دد	0,279	0,122	0,858	-19,04
21	-0,2	"	3,2601	دد	18,817	-0,029562	0,19223	دد	دد	-0,172	0,042	0,823	-14,65
					<i>n</i> ₀₀	=1,6000, f'= 1	0,0 мм, ω =	= 19°					
22	-0,20	-2,00	-4,687	2,0	9,008	-0,056000	0,264575	-2,0	-3,0	1,484	0,489	0,866	-8,064
23	-0,10	"	-2,481	دد	9,970	-0,0168889	0,145297	دد	-3,0	5,992	1,643	-1,121	30,819
24	-0,05	دد	-2,009	دد	9,978	0,00266667	0,057735	"	دد	-8,259	-3,942	-0,0075	9,035
	<i>n</i> ₀₀ =1,6000, <i>f</i> '=3,0 мм, ∞=21°												
25	0,20	-1,800	-4,9554	1,4	2,947	-0,1822394	0,477283	-0,5	-1,2	-0,039	-0,045	0,749	-5,651
26	0,26	دد	-2,0896	دد	3,096	-0,105637	0,36338	"	دد	0,683	0,159	-0,769	26,63
27	0,27	"	-1,9059	دد	3,104	-0,09287	0,34071	دد	دد	0,700	0,162	-0,158	13,642
28	0,28	"	-1,7519	دد	3,106	-0,080103	0,31643	"	"	0,666	0,150	0,052	9,170
29	0,30	"	-1,5082	دد	3,095	-0,0545689	0,26117	-0,5	دد	0,414	0,075	0,223	5,539

Цель исследования — выявление типа конфигурации поверхностей линзы и ее параксиальных характеристик, а также определение градиента ПП (коэффициента n_{10}), при которых радиально-градиентная линза имеет заданное фокусное расстояние и положительную кривизну изображения.

Рассмотрены линзы с фокусными расстояниями 30, 20, 10 и 3,0 мм с вогнутой и выпуклой поверхностями со стороны предмета. При анализе результатов синтеза особое внимание было обращено на минимальное отклонение фокусного расстояния синтезированной линзы от заданного, фокусирующий тип градиента ПП ($n_{10}<0$) и положительные величины астигматических отрезков Z'_m , Z'_s .

Анализ табл. 1 показывает, что при синтезе положительной тонкой линзы с фокусным расстоянием f' = 30 мм с вогнутой передней поверхностью и входным зрачком, расположенным перед линзой, диапазон значений коэффициента $S_{IV\kappa}$, при котором отклонения значения фокусного расстояния от заданного не превышают ± 5 % и астигматические отрезки положительны, составляет -0,3...0,1. При f' = 20 мм рассмотрены две конфигурации передней поверхности линзы: вогнутая и выпуклая. При вогнутой фронтальной поверхности (входной зрачок перед ней) коэффициент $S_{IV\kappa}$ находится в диапазоне 0,2...0,4, при выпуклой фронтальной поверхности — в диапазоне 0,1...0,3. При f' = 10,0 мм и вогнутой передней поверхности с радиусом кривизны $r_1 = -2,0$ мм имеем положительную кривизну поля при $S_{IV\kappa}$ в диапазоне 0,3...0,26.

Еще одной особенностью синтеза радиально-градиентной линзы является вычисление требуемого фокусного расстояния при значениях ее конструктивных параметров, существенно отличающихся от полученных при отсутствии неоднородности ПП, что видно из сравнения граф таблицы, в которых приведены рассчитанные значения фокусных расстояний градиентной f'_{G} и однородной f'_{H} линзы. Таким образом, положительные значения астигматических отрезков Z'_{m} , Z'_{s} получают, когда r_{1} и r_{2} одного знака и близки по значению; при этом существует параметрическое поле r_{1} , r_{2} , n_{10} , в пределах которого Z'_{m} , $Z'_{s} > 0$.

Пример 1. Оптическая схема эндоскопа. Градиентная линза с положительной кривизной изображения использована при проектировании оптической схемы эндоскопа. Как было отмечено ранее, трудноисправимой аберрацией в оптической схеме эндоскопа с увеличенной

длиной является кривизна поля изображения, что связано с наличием в схеме эндоскопа значительного количества положительных линзовых или градановых компонентов [4].

Для минимизации кривизны поля изображения необходимо включить в оптическую схему эндоскопа один или несколько компонентов с положительной кривизной поля изображения. Это может быть головной объектив специальной конструкции, а также градиентный компонент с положительной кривизной поля, входящий в оптическую систему переноса изображения (градан — транслятор). Ниже приведены предварительные результаты проектирования оптической схемы эндоскопа, в котором градиентными линзами с положительной кривизной поля изображения являются объектив (поз. 26 в табл. 1) и последний компонент градановой оптической системы переноса изображения. Параметры градиентной среды градана — транслятора: показатель преломления на оси $n_{00} = 1,6$, константа распределения g=0,0628318 мм⁻¹, аберрационный коэффициент $h_4=0,00$. Следует отметить, что данное значение коэффициента h_4 обеспечивает при телецентрическом ходе второго вспомогательного луча отсутствие в градане астигматической разности третьего порядка, присутствует только кривизна поля изображения Петцваля.

			Тиблици 2
<i>г</i> , мм	<i>d</i> , мм	n_{00}	$n_{10}, g, \text{MM}^{-1}, h_4$
$r_1 = -1,800$	1,4	1,6000	n_{10} =-0,105637
$r_2 = -2,089$	3,5	1	—
$r_3=0,000$	25,0	1,6000	<i>g</i> =0,0628318, <i>h</i> ₄ =0,0
$r_4=0,0$	0,0	1	_
$r_5 = 0,000$	100,0	1,6000	<i>g</i> =0,0628318, <i>h</i> ₄ =0,0
$r_6 = 0,000$	2,0	1,0	—
$r_7 = 3,186$	1,0	1,6000	$n_{10} = -0,071038$
$r_8 = 2,298$	8,413	1	

Конструктивные параметры дистальной части эндоскопа приведены в табл. 2.

Использование линзы с положительной кривизной поля изображения в качестве головного объектива позволило получить следующие характеристики эндоскопического объектива (ЭО, вариант 1): фокусное расстояние f' = 3,11 мм, задний фокальный отрезок $s'_{F'} = 8,413$ мм, удаление входного зрачка $s_p = -2,0$ мм, угловое поле $2\omega = 40^\circ$, диагональ изображения 2y'=2,2 мм, дисторсия 9,32 %; сферическая аберрация для края входного зрачка с координатой $m_{3p} = 0,4$ мм равна $\Delta s' = -0,156$ мм, астигматические отрезки на краю поля: $Z'_m = 0,346$ мм, $Z'_s = -0,153$ мм.

При использовании в качестве головного объектива градиентной линзы с малой отрицательной кривизной изображения (поз. 25 в табл. 1, ЭО, вариант 2) имеем большие значения астигматических отрезков: на краю поля $Z'_m = -1,47$ мм, $Z'_s = -0,75$ мм, при этом фокусное расстояние и фокальный отрезок незначительно отличаются от этих параметров ЭО, вариант 1.

Значения контраста изображения (K) в функции пространственной частоты в центре и по полю изображения для 1-го и 2-го вариантов эндоскопического объектива приведены в табл. 3 (y' в мм).

								таблица з	
	Вариант 1 Вариант 2								
Параметр	y' = 0	$y' = 0,5y'_{\max}$	$y' = 0, 7 y'_{\text{max}}$	$y'_{\rm max}$	y' = 0	$y' = 0,5y'_{\text{max}}$	$y' = 0, 7 y'_{\text{max}}$	$y'_{\rm max}$	
<i>N</i> , мм ⁻¹	50	50	35	15	50	50	35	15	
K	0,27	0,34	0,20	0,15	0,32	0,07	0,1	0,07	

Как видно из табл. 3, разрешающая способность (*N*) ЭО (вариант 1) плавно изменяется от 50 мм⁻¹ в центре до 15 мм⁻¹ на краю поля; в ЭО, вариант 2, в центре поля изображения $N \approx 50 \text{ мм}^{-1}$, а на краю поля $N \ll 15 \text{ мм}^{-1}$, что вызвано резким падением контраста изображения до 0,1.

Пример 2. Проектирование объектива Pin Hole. Необычные свойства линзы с радиальным градиентом ПП продемонстрировали возможность создания объектива Pin Hole с высокой разрешающей способностью по всему полю изображения. Конструктивные параметры объектива приведены в табл. 4.

			Таблица 4
<i>г</i> , мм	<i>d</i> , мм	<i>n</i> ₀₀	$n_{10}, \text{ Mm}^{-2}$
$r_1 = -2,421$	0,99	1,66	0,0
$r_2 = -1,294$	0,25	1,0	—
$r_3 = -1,117$	0,67	1,65	0,0
$r_4 = -3,02$	0,08	1,0	
$r_5 \Rightarrow \infty$	1,2	1,44	0,0
$r_6 = -2,429$	0,08	1,0	—
<i>r</i> ₇ =4,446	1,69	1,55	0,0
$r_8 = 2,168$	1,23	1,66	0,0
$r_9=6,400$		1,0	

Параметры объектива: f' = 3,18 мм, $s'_{F'} = 1,89$ мм, $s_p = -0,6$ мм, $D_{3p} = 0,7$ мм, $2\omega = 79^\circ$, дисторсия -30,7 %, 2y' = 3,64 мм. Разрешающая способность по полю изображения: в центре поля более 60 мм⁻¹, в зоне поля 45 мм⁻¹, на краю поля 25 мм⁻¹. Как видно, разрешающая способность объектива на краю поля существенно уменьшается по сравнению с центром.

С целью изучения коррекционного потенциала оптической схемы при использовании градиентных линз первая однородная линза была заменена на радиально-градиентную (поз. 29 в табл. 1).

Конструктивные параметры объектива для этого варианта приведены в табл. 5.

			Таблица З
<i>г</i> , мм	<i>d</i> , мм	<i>n</i> ₀₀	$n_{10}, \text{ MM}^{-2}$
$r_1 = -1,878$	1,4	1,6	-0,0545689
$r_2 = -3,284$	0,25	1	—
$r_3 = 2,175$	0,67	1,65	0,0
$r_4 = -2,965$	0,08	1	—
$r_5 = 23,217$	1,2	1,44	0,0
$r_6 = -3,617$	0,08	1,0	—
$r_7 = 3,839$	1,69	1,55	0,0
$r_8 = 2,533$	1,23	1,66	0,0
$r_9 = 4,520$		1.0	_

Параметры объектива: f' = 3,14 мм, $s'_{F'} = 1,80$ мм, $s_p = -0,6$ мм, $D_{3p} = 0,7$ мм, $2\omega = 90^\circ$, дисторсия -37,3%, $2\gamma' = 4,0$ мм.

Применение градиентной линзы позволило существенно исправить кривизну поля изображения даже при несколько увеличенном поле. Разрешающая способность в пределах всего поля изображения не менее 150 мм⁻¹.

Согласно результатам исследования при необходимом радиальном градиенте ПП при менисковой поверхности линзы можно получить требуемое фокусное расстояние. Тонкие линзы с такими характеристиками не могут быть реализованы на основе однородных оптических стекол.

Основываясь на приведенных примерах, можно утверждать, что представляется перспективным применение радиально-градиентных линз в схемах жестких эндоскопов с целью коррекции кривизны поля при значительной длине дистальной части эндоскопа, а также в схемах малогабаритных фото- и ТВ-объективов с повышенным качеством изображения по всему полю.

СПИСОК ЛИТЕРАТУРЫ

1. Слюсарев Г. Г. Методы расчета оптических систем. М.: Машиностроение, 1969. 550 с.

- 2. Волосов Д. С. Фотографическая оптика. Л.: Искусство, 1972. 650 с.
- 3. Сушков А. Л. Коррекция кривизны поля изображения линзы с радиальной неоднородностью показателя преломления // Изв. вузов. Приборостроение. 2014. Т. 57, № 10. С. 60—65.
- 4. *Сушков А. Л.* Монохроматические аберрации граданов как базовых элементов жестких эндоскопов. М.: МГТУ им. Н. Э. Баумана, 2008. 44 с.

Сведения об авторе Александр Леонидович Сушков – канд. техн. наук, доцент; МГТУ им. Н. Э. Баумана; кафедра лазерных и оптико-электронных систем; E-mail: ale-sushkov@yandex.ru

Рекомендована кафедрой лазерных и оптико-электронных систем

Поступила в редакцию 24.04.17 г.

Ссылка для цитирования: Сушков А. Л. Градиентная линза с положительной кривизной поля изображения в схемах объектива эндоскопического типа и объектива Pin Hole // Изв. вузов. Приборостроение. 2017. Т. 60, № 11. С. 1054—1059.

GRADIENT LENS WITH A POSITIVE IMAGE CURVATURE IN OPTICAL SCHEMES OF ENDOSCOPIC TYPE AND PIN HOLE LENSES

A. L. Sushkov

Bauman Moscow State Technical University, 105005, Moscow, Russia E-mail: ale-sushkov@yandex.ru

Analysis of refractive index gradient and design of a positive lens providing atypical correction of image field curvature is presented. The results are employed in design of optical schemes of endoscopic type and Pin Hole lenses.

Keywords: lens, radial gradient of the refractive index, image field curvature

Data on author

Aleksander L. Sushkov	_	PhD, Associate Professor; Bauman Moscow State Technical University,
		Department of Laser and Optoelectronic systems;
		E-mail: ale-sushkov@yandex.ru

For citation: Sushkov A. L. Gradient lens with a positive image curvature in optical schemes of endoscopic type and Pin Hole lenses. *Journal of Instrument Engineering.* 2017. Vol. 60, N 11. P. 1054—1059 (in Russian).

DOI: 10.17586/0021-3454-2017-60-11-1054-1059