ВИБРОАКУСТИЧЕСКИЙ КОНТРОЛЬ ИЗНАШИВАНИЯ ОБРАЗЦОВ ЦИЛИНДРИЧЕСКИХ ПАР ТРЕНИЯ

Л. В. Ефремов¹, А. В. Тикалов²

¹Институт проблем машиноведения РАН, 199178, Санкт-Петербург, Россия

²Санкт-Петербургский политехнический университет Петра Великого, 195251, Санкт-Петербург, Россия E-mail: tikalov2010@mail.ru

Рассмотрена задача определения времени приработки узла трения "вал вкладыш подшипника скольжения" в зависимости от показателя виброускорения низкой, средней и высокой частот трехдиапазонного спектра, полученных при помощи виброметра CM-21. В результате ряда опытов на машине трения удалось установить зависимость между временем приработки узла трения и виброакустической составляющей. Предложен способ прогнозирования периода приработки цилиндрической пары трения путем контроля виброакустической составляющей с учетом ее износа.

Ключевые слова: виброметр, цифровой микроскоп, износ, лунка, измерение, образец, машина трения, виброускорение, приработка

При выполнении предыдущих этапов исследований на машине трения был решен ряд актуальных задач совершенствования методов искусственных баз (МИБ) и виброакустического контроля (ВАК) с помощью виброметра СМ-21 [1]. В частности, в рамках изучения МИБ [2—4] было установлено, что наиболее качественные круглые лунки (рис. 1) диаметром d получаются с помощью стандартного сверла по металлу с углом резания $\phi = 118^{\circ}$ при глубине сверления

ŝ

118°

$$h = 0,5d \operatorname{ctg} \frac{\varphi}{2} = 0,5d \operatorname{ctg} \frac{10}{2} = 0,3d$$

Puc. 1

Наиболее интересные для науки и практики результаты были получены на этапе освоения методов ВАК с помощью аппаратуры ООО "ВАСТ" [1]. Был опробован самый простой и относительно недорогой виброметр CM-21 (рис. 2), который, в отличие от спектрометров типа СД-21 или СД-12М, не имеет программы для узко- или широкополосного анализа вибрации с использованием третьоктавных фильтров.

Puc. 2

Однако такой подход трудно применить для решения поставленной задачи из-за большой нестабильности сигнала, а также необходимости его статистической обработки, что приводит к увеличению времени испытаний. Этого недостатка лишен виброметр СМ-21, который оснащен упрощенным фильтром, состоящим из трех диапазонов: низкочастотного (НЧ) — 50—300 Гц. среднечастотного (СЧ) — 300—1800 Гц и высокочастотного (ВЧ) — 1,8—10 КГц (см. рис. 2). Для демонстрации эффективности этого способа на рис. 3 приведен пример трех гистограмм среднеквадратичных значений ускорения α [м/c²], каждая состоит из трех столбцов: $1 - H_{\rm H}$, 2 — СЧ и 3 — ВЧ.

Проведен большой объем испытаний образцов трибосопряжений разного вида [5]: при граничной смазке и без смазки, при разной шероховатости (от гладких колодок до напильника), при изменении скорости вращения и давления. В результате был сделан однозначный вывод о том, что трение и процесс изнашивания образцов характеризуются в основном высокочастотной составляющей (столбец 3), рис. 3 убедительно подтверждает этот вывод. На рис. 3, а приведен пример измерений α при демонтированном узле трения, при ВЧ $\alpha \approx 0$; $\alpha_{max} = 9 \text{ м/c}^2$ для ВЧ наблюдается на рис. 3, *в* при испытаниях напильника, а значение 1,5 м/с² соответствует испытаниям гладкого образца при граничной смазке на рис. 3, б [5].

В настоящей работе наряду с параметром $\alpha [M/c^2]$ будем определять уровень вибрации по ускорению α' в децибелах [6]:

$$\alpha' = 120 + 20\log\alpha \,. \tag{1}$$

На рис. 4 схематично показано, как в процессе ВАК узла трения период его приработки характеризуется снижением уровня вибрации от 105 дБА (0,178 м/c²) до некоторого стабильного значения 80 дБА $(0,01 \text{ м/c}^2)$.

Таким образом, цель настоящей работы — определить зависимость интенсивности изнашивания V от ВЧ-вибрации α

$$R = 10^{\circ} h / V \pi dn \text{ [мин]}, \tag{2}$$

где *h* — износ [мм], *d* — диаметр вала [м], *n* — частота вращения вала [об/мин], *R* — время приработки узлов трения.

Испытания на машине трения выполнялись при нагрузке 3 кгс и частоте вращения n = 300 об/мин по схеме "вал—вкладыш подшипника" со смазкой (d = 0,05 м). Был спроектирован специальный узел трения (рис. 5) для крепления вкладыша 4. Этот узел состоит из держателя 2, закрепленного на неподвижном валу нажимного устройства 1. Выходной вал 3 приводится в движение приводом машины трения СМЦ-2 со скоростью n, моделируя тем самым трение между поверхностью вкладыша подшипника 4 и валом 3.

Объектом исследования выступал вкладыш подшипника автомобильного двигателя (рис. 5, δ). Он имеет трехслойное антифрикционное покрытие с твердостью менее 60HB (такая твердость позволила снизить время приработки [5]). Для периодического измерения износа на поверхность трения с помощью сверла были нанесены девять лунок d = 2,5-3 мм (рис. 5, δ).

Было проведено пять сеансов испытаний продолжительностью от 15 до 40 мин. Перед началом первого сеанса при помощи электронного микроскопа был измерен начальный диаметр лунок d_0 и вычислена их глубина $h_0 = 0,3d_0$. Затем такая же операция выполнялась по завершении каждого *i*-го сеанса, что позволило оценить износ $\Delta h_i = h_i - h_{i-1}$ за время t_i . За время сеанса путь трения для каждой лунки составит $S_i = t_i \pi dn/1000$ км, что позволяет получить искомую формулу для скорости изнашивания:

$$V_i = 10^3 h_i / S_i = 10^6 h_i / \pi dnt_i \, [\text{MM}/1000 \,\text{KM}].$$
⁽³⁾

Расчет указанных параметров по результатам измерения лунок для каждого сеанса выполнялся по программе в редакторе EXCEL (рис. 6).

Исходные	е данные	ролик	D	• 0.05	m				
Частоты вращени время работы мин		• 100	• 300 • 10	• <u>350</u> • 0	• <u>500</u>				
		• 0				путь тр		0471239	км
	лунка	инструм	параметр	d	h	d1	h1		им/1000кл
16 05 17	1	сверло	•118	•2.188	0:657342	•2.18	0:654938	8:002 00	100263
нов под	2	сверло	• 118	•2.094	0: 629101	•2.071	0: 622191		4.66326
1 кг	3	сверло	•118	•2.235	0:071462	•1.412	en124208	0:24725	24.6896
	4	сверло	•118	•1.976	0.59365	•1.882	0.56541	0.02824	9.92809
	5	сверло	•118	•1.906	0.57262	•1.882	0.56541	0.00721	5.30079
	6	сверло	•118	•1.953	0.58674	•1.741	0:523049	8:063691	135.157
	7	сверло	•118	•1.835	0.55129	•1.812	€.54438	€.00691	4.66326
	8	сверло	•118	•1.976	0.59365	•1.906	€.57262	€.02103	4.6273
	9	сверло	•118	•1.859	₩.5585	• 1.1	0:0 30473	0:228027	483.8875
								Средняя	70.12862
								СКО	60.57569
								КВ	0.86378

Высокое качество измерений вибрации обеспечивалось за счет установки магнитного акселерометра непосредственно на держатель 2 узла трения (рис. 5, *a*).

В табл. 1 представлены экспериментальные данные виброускорения (значения виброускорения получены при ВЧ). Эти величины представляют собой первичные исходные данные для корреляционного анализа результатов испытаний.

Таблица	1
таолица	1

Парамотр	Время сеанса, мин								
Параметр	15	20	20	40	35				
V, мм/1000 км	61,061	33,364	7,969	5,702	1,437				
α , MM/c ²	0,6	0,4	0,2	0,1	0,08				
α', дБА	116	112	106	100	98				

Экспериментальная зависимость скорости изнашивания от α

Параметры, необходимые для обоснования искомых зависимостей времени приработки (n = 300 об/мин) от виброускорения, представлены в табл. 2 (значения n, t, V — опытные; $S, \Sigma h$ — расчетные; h — опытные и расчетные: K = V/h 1/1000 км).

Таблица 2

Сводная таблица испытании узла трения											
i	<i>i t</i> , мин	<i>S</i> , км	ν,	V , α , MM/c^2			26	Σ^{h} , ω_{e}	h yay	V	
i			мм/1000 км	НЧ	СЧ	ВЧ	20, KM	Δn , MM	n, mm	Λ	
1	15	0,707	61	0,7	1,061	0,62	0,707	0,043	0,043	1414,7	
2	20	0,942	33	0,64	1,066	0,43	2,356	0,098	0,054	606,3	
3	20	0,942	7,97	0,55	1,066	0,25	4,948	0,118	0,021	385,8	
4	40	1,881	5,7	0,44	1,05	0,1	9,425	0,144	0,026	223,4	
5	35	1,65	1,4	0,4	1	0,08	15,551	0,152	0,009	163,2	

В табл. 2 приведены все данные, необходимые для определения зависимости времени приработки от значения α при ВЧ вида (2) путем корреляционного анализа [2]. Поскольку все параметры табл. 2 взаимосвязаны, формулу (2) можно нескольких упростить

$$R = 10^6 / K \pi dn \, [\text{MUH}]. \tag{4}$$

При этом возможны различные варианты решения этой задачи с применением метода наименьших квадратов. В редакторе MATHCAD экспериментально получена функция R_3 для расчета времени приработки путем перевода логарифмической функции в степенную:

$$R_{2} = 10^{1.02} / \alpha^{0.996} \approx 10 / \alpha , \qquad (5)$$

Рассчитанный коэффициент корреляции *k*_c подтверждает хорошее согласие полученной функции с опытом:

$$k_c = \operatorname{corr}(R_2, t) = 0,992$$
. (6)

Для прогнозирования периода приработки *R*_p от формулы (5) перейдем к следующим выражениям:

$$K = R_{3}\pi dn = 10^{6} \alpha / 10\pi 0,05 \cdot 300 \approx 2000\alpha,$$

$$R_{p} = 10^{6} / 2000\alpha\pi dn = 500 / \alpha\pi dn \text{ [мин]},$$

$$\alpha = 500 / t\pi dn \text{ [см/c^{2}]}.$$

Результаты выполненного корреляционного анализа представлены в табл. 3, а также на рис. 7 (*1* — результаты эксперимента, *2* — расчет).

На рис. 7 приведены зависимости α от времени приработки — в декартовых (*a*) и логарифмических (*б*) координатах. Если за допустимую норму минимального уровня вибрации принять 80 дБА (0,01 м/c²), то прогнозируемый период приработки составит по формуле $R_3 = 10/0,01 = 1000$ мин, или около 17 ч, что подтверждается линейной логарифмической функцией на рис. 7, *б*.

Дополнительные сведения корреляционного анализа

<i>α</i> , мм/c ²	$K_{\mathfrak{I}}$	Kp	$V_{\mathfrak{I}}$	$V_{\rm p}$	$h_{\mathfrak{s}}$	$h_{ m p}$	<i>t</i> , мин	$R_{\rm p}$
0,6	1415	1152	61	61,5	0,043	0,053	15	17
0,4	606,3	778,9	33	31,5	0,054	0,04	35	27
0,2	385,8	399,1	7,97	9,9	0,021	0,025	55	53
0,1	223,4	204,5	5,7	3,12	0,026	0,015	95	106
0,08	163,2	164,9	1,4	2,15	0,009	0,013	130	132
k_c	0,965		0,997		0,825		0,992	

Проведенные исследования триботехнических свойств цилиндрических образцов на машине трения позволяют сформулировать следующие выводы:

1) полностью подтверждена эффективность предложенного метода ВАК изнашивания трибосопряжений с помощью высокочастотной полосы трехдиапазонного фильтра виброметра СМ-21. В частности, доказана возможность решать с его помощью актуальную задачу прогнозирования времени приработки пары трения в сочетании с МИБ;

2) анализ подтвердил линейную зависимость высокочастотной составляющей вибрации от времени приработки (рис. 3) [7];

3) установлено, что окончание процесса приработки характеризуется достижением минимальной величины чувствительности прибора, например, 70—80 дБА (0,003—0,01 м/c²). Поэтому постоянное наблюдение за износом после приработки не требуется;

4) описанные в статье результаты ВАК относятся к конкретным условиям испытаний и состояний объекта исследований.

СПИСОК ЛИТЕРАТУРЫ

1. Барков А. В., Баркова Н. А. Вибрационная диагностика машин и оборудования. Анализ вибрации: Учеб. пособие. СПб: Севзапучцентр, 2013. 152 с.

- 2. Ефремов Л. В. Проблемы управления надежностно-ориентированной технической эксплуатацией машин. СПб: Art-Xpress, 2015. 206 с.
- 3. *Ефремов Л. В., Тикалов А. В.* Измерение износов деталей машин в полевых условиях на основе метода искусственных баз // Изв. вузов. Приборостроение. 2016. Т. 59, № 3. С. 237—242.
- 4. Ефремов Л. В., Тикалов А. В., Бреки А. Д. Ускоренные испытания стальных образцов на износостойкость методом искусственных баз // Изв. вузов. Приборостроение. 2016. Т. 59, № 8. С. 671—676.
- 5. *Ефремов Л. В., Баева Л. С., Тикалов А. В.* Виброакустические испытания образцов трибосопряжений на износостойкость // Вестн. Астраханского государственного технического университета. Сер. Морская техника и технология. 2017. № 2. С. 69—76.
- 6. *Ефремов Л. В., Черняховский Э. Р.* Надежность и вибрация дизельных установок промысловых судов. М.: Пищевая промышленность, 1980. 232 с.
- 7. Заковоротный В. Л., Семенова Н. С. Виброакустическая диагностика трибосопряжений // Вестн. ДГТУ. 2005. Т. 5, № 1(23).

		Сведения од ивторих
Леонид Владимирович Ефремов	_	д-р техн. наук, профессор; Институт проблем машиноведения РАН,
		лаборатория трения и износа; E-mail: levlefre@ya.ru
Андрей Владимирович Тикалов		аспирант; Санкт-Петербургский политехнический университет, ка- федра машиноведения и основ конструирования; E-mail: tikalov2010@mail.ru

Поступила в редакцию 21.11.17 г.

Ссылка для цитирования: *Ефремов Л. В., Тикалов А. В.* Виброакустический контроль изнашивания образцов цилиндрических пар трения // Изв. вузов. Приборостроение. 2018. Т. 61, № 2. С. 106—111.

VIBROACOUSTIC CONTROL OF WEARING OF SAMPLES OF CYLINDRICAL FRICTION COUPLE

L. V. Efremov¹, A. V. Tikalov²

 ¹ Institute of Problems of Mechanical Engineering of the RAS, 199178, St. Petersburg, Russia E-mail: fadinspb@yandex.ru
 ² Peter the Great St. Petersburg Polytechnic University, 195251, St. Petersburg, Russia E-mail: tikalov2010@mail.ru

The problem of determining the running-in time of the friction unit shaft – liner of plane bearing is considered depending on the vibration acceleration index of the low, medium, and high frequencies in the tri-band spectrum obtained with the SM-21 vibrometer. On the base of results of experiments carried out with the use of a friction machine, a relationship between the running-in time of the friction unit and the vibro-acoustic component is established. A method is proposed for predicting the running-in period of a cylindrical friction pair not only by controlling the vibroacoustic component, but also by the amount of wear.

Keywords: vibrometer, digital microscope, wear, hole, measurement, sample, friction machine, vibroacceleration, running-in

		Data on authors
Leonid V. Efremov	—	Dr. Sci., Professor; Institute of Problems of Mechanical Engineering of the
		RAS, Laboratory of Friction and Wear; E-mail: levlefre@ya.ru
Andrey V. Tikalov	—	Post-Graduate Student; St. Petersburg Polytechnic University, Department
		of Mechanical Engineering and Design Basics;
		E-mail: tikalov2010@mail.ru

For citation: Efremov L. V., Tikalov A. V. Vibroacoustic control of wearing of samples of cylindrical friction couple. *Journal of Instrument Engineering*. 2018. Vol. 61, N 2. P. 106–111 (in Russian).

DOI: 10.17586/0021-3454-2018-61-2-106-111