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Abstract. Learning from demonstration approach is gaining interest for programming robot sensory-motor skills. At the 
same time, most of the works are addressing manipulation scenarios with position-based control, while various application 
domains and work in dynamic environment require safe and stable physical interaction where assessing proper force/torque 
profile along motion is crucial. This study  is aimed at developing experiment planning and data collection and processing 
procedure for training robot behavior priors for dynamic interaction tasks. We fuse motion capture and force-torque sensory 
data within robot-out-of-loop setting to train Gaussian Mixture Model/Gaussian Mixture Regression (GMM/GMR) model 
as a reference motion generator that takes time and material label as inputs and outputs predicted end-effector’s pose, twist, 
and interaction wrench vectors. For the case-study we considered experiment setting of cutting three different materials like 
penoplex, cork, and PVC resulting in 120 demonstrations in total (40 for each material). Algorithms for data processing, 
GMM/GMR model training and verification have been introduced. We achieved RMSEs of 7.12  and 10.69 % for twist 
and pose predictions respectively and RMSE of 14.33 % for power estimates as a metric to illustrate how accurate twist-
wrench correspondences have been captured by our model, which is important for interaction tasks. 
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Аннотация. Подход к обучению на основе демонстрации привлекает все больше внимания при программировании 
сенсорно-моторных навыков роботов. В то же время большинство работ сосредоточено на сценариях с 
управлением по положению, тогда как различные прикладные области и работа в динамической среде требуют 
безопасного и устойчивого физического взаимодействия, где критически важно оценивать соответствующий 
профиль силы/момента контакта вдоль траектории. Разработана методика планирования экспериментов и сбора и 
обработки данных для обучения моделей, кодирующих сенсорно-моторные навыки динамического взаимодействия 
манипулятора с окружением. Для этих целей комплексируются данные, поступающие от системы оптического 
захвата движения и силомоментного датчика, измеряемые при выполнении человеком последовательности 
действий. Рассмотрен пример резки скальпелем различных материалов по заданным траекториям. В качестве 
генератора эталонного движения используется регрессионная модель на основе смеси гауссиан (GMM/GMR), на 
вход которой поступают метки времени и материала, а на выходе выводятся предсказанные значения векторов 
пространственного положения, скоростей и сил и моментов контакта инструмента. Проведено 120 экспериментов 
с тремя различными материалами (пеноплекс, пробка и ПВХ) — по 40 на каждый материал. Представлены 
алгоритмы для обработки данных, результаты обучения модели и ее верификации. Для предсказаний скорости 
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и положения инструмента получены значения среднеквадратического отклонения соответственно 7,12 и 10,69 %, 
а также 14,33 % — для мощности как метрики точности соответствия профиля сил и моментов контакта вдоль 
движения.

Ключевые слова: обучение на основе демонстрации, передача сенсорно-моторных навыков, контактная 
манипуляция, захват движения, GMM/GMR модели
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для программирования роботов в задачах контактного манипулирования  // Изв. вузов. Приборостроение. 2024. 
Т. 67, № 6. С. 500–510. DOI: 10.17586/0021-3454-2024-67-6-500-510.

Introduction. Learning from demonstration (LfD) is a promising approach to transfer safe and 
dexterous manipulation skills from human to robots, which is of even higher importance for contact-
rich tasks, where coordination between the applied interaction forces/torques and manipulation 
trajectories is essential. This work is aimed at developing experiment planning and data collection and 
processing procedure for training robot behavior priors for such tasks. 

A recent comprehensive review on transfer learning in robotics, which includes approaches 
taxonomy, trends and challenges description as well as analysis of more than 150 papers is presented 
in [1].

Recording and processing data from demonstrations experiments is the first step to encode prior 
knowledge on human sensory-motor skills that will be used later as behavior priors for accelerating 
the LfD process [2, 3]. There are many recent works on that subject focusing mostly on pick-and-
place tasks, where kinesthetic data limited to position recordings and robot-in-the-loop (teleoperated 
or hand-guided in admittance control mode) demos are good enough.  

In [4], a novel approach to robot learning from human physical feedback is introduced. This 
method characterizes human skills and tasks by breaking them down into object-centric sub-tasks and 
interpreting physical interventions from human in relation to specific objects. The task is to adjust 
nominal behavior priors from corrective movements (perturbations) initiated by human, therefore 
unlike our approach there were no complete movement skill demonstrations recorded and the task was 
limited to imitation of trajectories, while the interaction wrench was not considered.

In [ 5], a hybrid learning and optimization framework for mobile manipulators for complex 
and physically interactive tasks was proposed. The framework exploits an admittance-type physical 
interface to obtain intuitive and simplified human demonstrations and Gaussian Mixture Model 
(GMM)/Gaussian Mixture Regression (GMR) to encode and generate the learned task requirements in 
terms of position, twist, and wrench profiles. Unlike our proposed approach, this work adopted robot-
in-the-loop scenario and uses the resulted behavior priors as constraints for optimization of Cartesian 
impedance controlled for a specified robotic platform which limits the applicability of the study to 
address a very specific task with special conditions. 

Since we target interaction control scenarios over larger workspaces like material cutting, a 
novel robot-out-of-loop (ROOL) sensory setup enabling simultaneous motion capture (MoCap) and 
interaction force-torque (FT) data recording have been designed. 

Proposed approach provides a number of advantages:
1) high-accuracy richer sensory data to capture end-effector’s 6D pose as well as twist and wrench 

correspondences to encode by behavior priors’ models;
2) better safety and more natural human movements during demonstrations, because there are 

no constraints due to kinematic singularities and robot inertia for physically operated arms or limited 
field-of-view and latency during teleoperation;

3) wider workspace not limited by robot reachability constraints.
To collect training datasets, we planned and conducted a series of cutting experiments with three 

different materials like penoplex, cork, and PVC resulting in 120 demonstrations in total (40 for each 
material). 

GMM/GMR model have been employed as a manipulation skill encoder and behavior prior 
generator. It accepts time and material labels as inputs and outputs predicted end-effector’s trajectory 
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(end-effector’s pose and twist) with interaction wrench aligned along the movement. Models have 
been trained using expectations maximization algorithm with log-likelihood as a loss function. 

The rest of the paper is organized in the following way. At first, we formulate the problem of 
behavior model training from ROOL demonstration data as a general optimization task adapted for 
our case study. Next, we describe the experimental setup design including custom tooling and optimal 
sensory infrastructure configuration. After we describe the MoCap and FT data processing approaches 
followed by model structure and training algorithm explanation. Finally, we analyze obtained results 
to justify training data quality, convergence of the training process, and consistency of the learned 
manipulation skills with human demonstrations and conclude our work with discussion on future steps 
of how obtained results can be incorporated to robot interaction control systems.

Problem Statement. Fig. 1 illustrates the suggested approach for training behavior priors’ 
generator from ROOL demonstrations and further use of this data within interaction control scenarios. 
So, the core problem here is generator’s parameters training. 

We introduced the GMM/GMR model [6–8] of  components as a generator due to its adaptability 
in capturing intricate structures, handling nonlinear relationships between inputs and outputs, 
effectively estimating continuous variables from complex input-output mappings and the simplicity 
in hyperparameter adjustment as we only need to fine-tune the number of Gaussian components.

Fig. 1
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We will refer to the GMM/GMR model parameters as θ = [μ, Σ, π], where μ ⊂ RK×D is the means 
of Gaussians vector, Σ ⊂ RK×D×D is the covariance matrix, and π ⊂ RK is the mixing weights that 
indicate how much each Gaussian component contributes to the model. 

Then, generator training from a given pair of input-output data Ξ = [U, V] can be formalized as 
optimization problem:
 θ* = arg

θ
min||V – V||, s. t.

 0 ≤ πk ≤ 1; Σkπk = 1, Vi
TΣkVi > 0, 

 Vi
TΣkVi > 0,

where V and V are recorded and predicted by the model f (U, θ) output values respectively given inputs 
U, Vi is i-th column of V, Σk is k-th covariance matrix from Σ, θ* is the vector of desired values of 
model parameters’ estimates that minimize the error between the desired output values.

Experimental setup. The experimental setup is depicted at Fig. 2. Here we introduce the 
following frames: stationary base frame {B} and two moving tool-attached frames {P} for scalpel and 
{W} for FT sensor with both origins located at the tool central point (TCP, we select it at the scalpel’s 
blade tooltip), but different orientations. 

The OptiTrack system with 8 cameras, positioned around the working space in a way that tool-
attached markers are visible along its entire movement range by most of the cameras, was calibrated to 
capture the central area among all cameras. The base frame {B} was set on a fixed table in the center 
to guarantee precise capturing measurements for the frames {P} and {W}.

The FT sensor was attached to the scalpel through a custom-designed adapter consisting of 
two parts: a grip attached to the back of the FT sensor, held by a human hand, and a scalpel handler 
fastening the scalpel to the frontal side of the FT sensor. Eight markers were attached to the adapter 
in a way to ensure distribution along the entire body for better tracking accuracy. 

Within this experimental setup, we introduced three different materials (cork — CRK, 
penoplex — PNX, and PVC). To ensure better generalization capabilities of the GMM/GMR, while 
still capturing shape preservation capabilities we performed a series of straight line parallel cuts of 
different length, 40 trials for each material resulting in a total of 120 demonstrations. 

Out of demonstrations we can record the following set of data: trajectory of coordinate frame 
{P} with respect to the base frame {B} registered by MoCap system and denoted as P = [XT, YT, 
ZT, Rx

T, Ry
T, Rz

T], and the wrench measurements expressed in coordinate frame {W} and denoted as  
W = [Fx

T, Fy
T, Fz

T, Tx
T, Ty

T, Tz
T]. 

Fig. 2
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Fig. 3

Data processing. We introduced data processing procedure consisting from three steps.
1. Cutting phase slicing. Recorded data contains three phases: reaching, cutting and releasing. 

Since we are interested in training cutting skill in particular, we sliced entire sequence and extracted 
only data corresponding to that stage by detecting, when absolute value of contact forces Fx

T, Fz
T change 

above a specified threshold (see Fig. 3: red is trajectory on X, Y, Z and green is Fx, Fy, Fz respectively).
2. Data imputation. We applied forward and backward fill techniques to guarantee the absence 

of missing values in recorded data.
3. Data filtering. As obtained position data are for cutting straight lines, we filtered outliers by 

fitting recorded sequences by a linear regression (see Fig. 4):

 Y = αy + βyX,

where Y is the fitted value for Y measurements, αy = Y – βyX, βy = , X and Y are 

mean values, N is the number is samples in the measurement’s sequence. We fit Z measurements the 
same way.

We extended our training data by calculating from recorded MoCap trajectory data P the 
associated twist ξ = [Vx

T, Vy
T, Vz

T, ωx
T, ωy

T, ωz
T]. It was done by numeric differentiation:

 ξi(t) = ,

where ξi, is the i-th column of ξ, ξi(0) = 0, ΔP(t) is the change in position between two consecutive 
measurements, fp is the measurements frequency.

To filter wrench measurements W we applied Exponential Moving Average (EMA) filter, which 
is a type of infinite impulse response filter that applies weighting factors which decrease exponentially 
(see Fig. 5):
 Wit = αEMAWit + (1 – αEMA)Wit–1,

where Wi is the i-th column of W, Wit is the exponential moving average value of Wi at time t,  

αEMA =  is the filter’s smoothing factor with ns being the desired number of periods or the span of 
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the EMA. The choice of  affects the sensitivity of the EMA to changes in the data: a smaller ns makes 
the EMA more responsive to new data, while a larger ns makes smoothing stronger.

Model training. We define generator input as a concatenation of time and material label 
sequences U = [τT, MT] ⊂ 𝓡2×N and the output is defined as V = [P , ξ, W] ⊂ 𝓡18×N . 

GMMs assume that the training data Ξ = [U, V] are generated from a mixture of several Gaussian 
distributions, each characterized by parameters mean μk covariance Σk, and a mixing coefficient πk 
which represents the weight of the k-th Gaussian component in the mixture. Then, the model training 
problem formulated above can be resolved by applying expectation maximization algorithm with log-
likelihood maximization criteria:

Fig. 4

Fig. 5
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 θ = arg
θ∈Θ
maxℒ(θ; Ξ),

where log-likelihood cost function 

 ℒ(θ; Ξ) = log(P(Ξ, ρ|θ)) = ∑
N

n=1
   ∑

K

k=1
I(ρn = k)(log(πk) + log(N(Ξn|μk, Σk))),

ρn is a latent variable indicating the component that generated the (nth) data point, (I(ρn = k)) is an 
indicator function that is 1 if (ρn = k) and 0 otherwise, (N(Ξn|μk, Σk)) is the probability density of (Ξn) 
under the Gaussian distribution with parameters (μk) and (Σk).

The algorithm consists of two steps. At the expectation step we compute the expected value of 
ℒ(θ; Ξ)

 EZ|Ξ[ℒ(θ; Ξ)] = ∑
N

n=1
   ∑

K

k=1
γρn(k)(log(πk) + log(N(Ξn|μk, Σk))),

where γρn(k) = E[I(ρn = k)] = P(ρn = k|Ξ) =  represents the posterior probability that the 

(nth) data point was generated by the (kth) component, given the current parameter estimates.
At the maximization step we maximize the expected complete log-likelihood obtained at the 

previous step with respect to parameters θ keeping (γρn(k)) fixed. 
So, we update parameters’ estimates the following way:

 μk
new = ,

 Σk
new = ,

 πk
new = .

Estimates convergence is assessed based on the change in log-likelihood between successive 
iterations. Specifically, the algorithm is considered to have converged when the change in log-
likelihood is below a predefined tolerance level , i.e.,

 Δℒ = |ℒ(θ(t+1); Ξ) – ℒ(θ(t); Ξ)| < α,

where: θ(t) and (θ(t+1)) are the parameter sets from consecutive iterations (t) and (t + 1) respectively.
Next, at the regression prediction step we calculate parameters of the GMR model out of GMM 

representation. At first, we decompose GMM parameters for input and output dimensions:

 μk = �μk
𝒰

μk
𝒱�, Σk = �

Σk
𝒰𝒰

Σk
𝒱𝒰

Σk
𝒰𝒱

Σk
𝒱𝒱�,

where μk
𝒰 ⊂ 𝓡𝒟u, μk

𝒱 ⊂ 𝓡𝒟v, Σk
𝒰𝒰   ⊂ 𝓡𝒟u×𝒟u, Σk

𝒱𝒱   ⊂ 𝓡𝒟v×𝒟v, Σk
𝒱𝒰  ⊂ 𝓡𝒟v×𝒟u, Σk

𝒰𝒱  ⊂ 𝓡𝒟u×𝒟v, for each 
component k, μk

𝒱|𝒰 = μk
𝒱 + Σk

𝒱𝒰(Σk
𝒰)–1(𝒰 – μk

𝒰), Σk
𝒱|𝒰    = Σk

𝒱𝒱   – Σk
𝒱𝒰   (Σk

𝒰𝒰   )–1Σk
𝒰𝒱  .

Then, we calculate the predicted output as

 𝒱 = γρ(K)𝒰μk
𝒱|𝒰,
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where γρ(K)𝒰 =                           is the responsibility.

Training results. Figures 6–9 illustrate the resulted generated trajectory-wrench data by GMM/
GMR compared to expected values. Fig. 6 — expected vs generated cutting trajectories on XZ plane 
using trained GMM/GMR for 3 different materials: a — cork, b — PVC, c — PNX. Fig. 7 — generated 
from GMM/GMR vs Expected Wrench data for cork; Fig. 8 — for penoplex; Fig. 9 — for PVC.

Fig. 6

Fig. 7
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Fig. 10 illustrates how model parameters (θ) converge to fit the training trajectory-wrench 
data (Ξ) using change in log-likelihood criteria (Δℒ) which reaches the threshold (α = 1–5) within 
100 epochs (training iterations).  

The results of training the GMM/GMR model on the preprocessed collected data and evaluating 
the generated trajectory, twist and wrench data compared to expected means of training trajectory, 
twist and wrench data Ξ. To assess the model’s performance, metrics such as root mean squared error 
(RMSE)) for Twist ξ and Position P, was employed. These evaluation metrics are detailed in Table.

 ϵ = ∑
N

i=1
(𝒱i – 𝒱i),

where 𝒱 and 𝒱 denote predicted and averaged recorded values for 𝒱 ⊂ [P, ξ] at time ti, ϵ refers to RMSE.
To evaluate the correspondence of the generated wrench to position data, we calculated the 

root mean squared error for the calculated power values from both predicted and expected Wrench 
and Position data (П, П), respectively. The results under different materials and cutting shapes are 
illustrated in Table:

Пi = Wiξı,

Пi = Wiξı,

where i refers to axes (X, Y, Z)

ϵП = ∑
N

i=1
(Пi – Пi).

Fig. 8
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Conclusions and future work.  In this study, 
our primary objective was to train behavior priors 
models for robotic manipulation in interactive 
tasks, where both trajectory and force profiles hold 
significant importance. Initially, we conducted simultaneous collection of trajectory and force/
torque data across multiple trials for the material cutting scenario. This involved designing a custom 
setup with a scalpel attached to an force-torque sensor to capture interaction wrench data and a 
motion capture system to record associated cutting trajectories. Subsequently, we underwent a 
data preprocessing phase to ready the dataset for training a GMM/GMR model, as a generator 
for behavior priors. We validated the convergence of the proposed model training and verified 
its performance on tests datasets, which demonstrated high accuracy. The novelty of this work is 
also in using GMM/GMR model with extended input that includes material labels, which opens 
opportunity for implementing an approach with a mixture of behavior prior generators specific 
for different materials. Future steps involve utilizing obtained behavior priors for regularization 

RMSE Evaluation metric for training the GMM/GMR model 
for all data where ϵP, ϵξ, ϵП, represent the RMSE for Position, 

twist and Power, respectively

Material ϵP, m ϵξ, ms ϵП, W
Cork 0.1165 0.0714 0.1408
Penoplex 0.1031 0.0711 0.1462
PVC 0.1012 0.0710 0.1430

Fig. 9

 Fig. 10
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to improve robot interaction control systems that can be based on Reinforcement Learning (RL) 
policies training or on optimization-based modern indirect force control algorithms similar to VIC 
(Variable Impedance Controllers) to train nonlinear functions for stiffness and damping tuning.
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