УДК 004.932

А. М. Малов, Т. А. Шереметьева, Г. Н. Филиппов, В. Г. Филиппов

КОМПЬЮТЕРНАЯ ОБРАБОТКА БИОМЕДИЦИНСКИХ МНОГОКАНАЛЬНЫХ ИЗОБРАЖЕНИЙ С ИСПОЛЬЗОВАНИЕМ ВИЗУАЛИЗАЦИИ МЕРЫ СХОДСТВА С ЭТАЛОНОМ

Представлена методика обработки многоспектральных изображений препаратов, используемых в медико-биологических исследованиях. Основой методики является целенаправленная визуализация и интерактивное выделение интересующих исследователей объектов. При целенаправленной визуализации используются все имеющиеся каналы многоспектрального изображения, кроме того могут быть использованы текстурные и градиентные признаки, а также априорная информация.

Ключевые слова: предварительная обработка, выделение объектов на изображении, медико-биологические изображения, микроскопия, многоканальные (многоспектральные) изображения.

Введение. Компьютерный анализ изображений — одна из новых медицинских технологий, имеющих немаловажное значение в проведении исследований и диагностике заболеваний. В связи со сложностью биомедицинских изображений практически невозможно полностью заменить компьютером человеческий мозг при их обработке. Вместе с тем системы анализа и обработки изображений позволяют при участии квалифицированного пользователя оперативно получать результаты высокого качества. Важной задачей компьютеризированных систем обработки изображений в медико-биологических исследованиях является визуализация информации — представление информации в удобном для зрительного восприятия виде, позволяющее выделять и измерять объекты интереса. В случае обработки многоспектральных (многоканальных) изображений задача визуализации особенно важна.

Известен метод [1], который преобразует совокупность попиксельно совмещенных многоканальных черно-белых изображений в одно изображение в псевдоцвете, присваивая отдельным каналам значение цвета и объединяя "раскрашенные" каналы. Вариантов такой раскраски может быть множество. Но при этом заранее неизвестно, какой из вариантов окажется наиболее удачным.

Используют также 3D-куб — трехмерное представление данных, при котором в плоскости XY представлена пространственная информация, а по оси Z — спектральная [2]. Такое представление помогает понять структуру и состав исследуемых данных, выбрать наименее искаженные шумом каналы. Специальные инструменты позволяют вращать этот куб, рассматривать его сечения, перелистывать изображения слоев в режиме анимации. Заметить детали препарата в этом случае можно, но для дальнейшей обработки с измерением характеристик такой способ визуализации непригоден.

Универсальные пакеты прикладных программ, предназначенные для задач картографии (ESRI, ERDAS, LHS), позволяют визуализировать многоспектральные изображения с использованием кластеризации по совокупности признаков. Эта операция не является простой и однозначной и в случае сложных изображений может привести к значительным погрешностям.

С помощью известных программных продуктов, используемых в медицине, биологии, материаловедении, криминалистике (таких как ВидеоТесТ, МЕКОС), анализируются цветные изображения или изображения в тонах серого и автоматически выделяются объекты на изображении по яркости и цвету. Эти программные пакеты хорошо справляются с задачами при

работе с изображениями приемлемого качества и не предназначены для анализа сложных объектов и многоспектральных изображений.

Немецкая фирма "Leica Microsystems" также предлагает ряд программных пакетов, предназначенных для исследования изображений, полученных с помощью флуоресцентной и световой микроскопии [3]. Например, программный пакет "LAS Image Overlay" позволяет работать как с цветными *RGB*-изображениями, так и с многоканальными. Основные усилия разработчики направили на минимизацию действий пользователя по улучшению качества визуализации изображений исследуемых микропрепаратов. При этом автоматически настраиваются яркость, контрастность, производятся гамма-коррекция и фильтрация. Возможность работы с многоканальными изображениями предусматривает автоматическое улучшение качества отдельных спектральных каналов и синтез цветного изображения с помощью упомянутого выше метода [1].

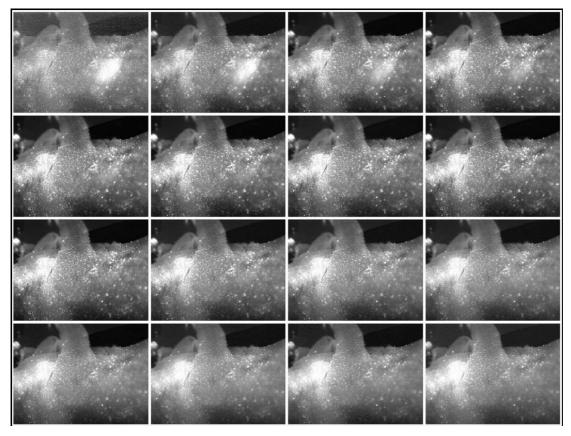
В программном обеспечении "The Spectral Assistant" и "ICE", разработанном специалистами Австралийского национального агентства CSIRO для анализа гиперспектральных изображений, используется методика "unmixing" — разделение сложного спектра, обусловленного несколькими "чистыми компонентами" (pure constituents), на его составляющие [4]. Разработчиками программы "The Spectral Assistant" предполагается, что известны спектры "чистых компонент", программы "ICE" — что не известны, но известно их количество. В этих программах визуализируется концентрация "чистых компонент". Эти методы относятся к методам автоматического анализа цветных и гиперспектральных изображений и не позволяют интерактивно влиять на результат.

В настоящей статье представлен интерактивный метод обработки многоканальных изображений для решения медико-биологических задач.

Методика обработки многоканальных изображений использует новый метод, основанный на преобразовании изображений по принципу сходства с образцом [5, 6]. В результате такой обработки получают изображение в градации серого, яркость каждого пиксела преобразованного изображения характеризует его сходство с эталоном по совокупности признаков, т.е. это преобразование производит "целевую визуализацию". Преобразованное таким образом изображение позволяет исследователю достаточно просто с помощью визуального контроля, используя свой опыт и контекстную информацию, выбрать пороговые ограничения для выделения объектов интереса.

Метод универсален по общему построению алгоритма и может быть легко адаптирован к конкретным задачам обработки медико-биологических изображений с помощью выбора пространства признаков, меры сходства и эталона (образца).

В качестве пространства признаков может быть выбрано пространство спектральных признаков размерностью, равной числу спектральных каналов. Кроме того, размерность этого пространства может быть увеличена за счет привлечения текстурных, градиентных признаков и признаков смежности.


В качестве меры сходства могут быть использованы любые из известных расстояний, используемых, в частности, в задачах классификации.

Выбор образца (эталона) производится пользователем либо заданием априорно известных значений признаков, либо с помощью указания на один из выделяемых объектов. Такой метод позволяет подготовить изображение к выделению объектов в сложных случаях при наличии на изображении нескольких групп различных объектов.

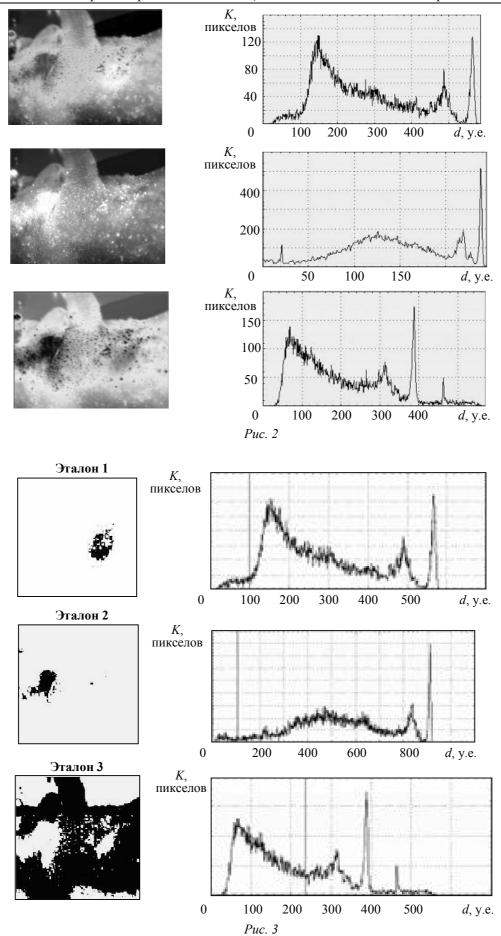
Заметим, что при выделении объектов нет необходимости в переходе от относительных к абсолютным значениям свечения и энергии излучения. Для выделения объекта достаточно наличия образца, измеренного в тех же условиях.

На рис. 1 представлено многоспектральное изображение в 16 различных диапазонах длин волн легкого мыши с опухолью, отмеченной флуоресцирующим протеином. Исходное

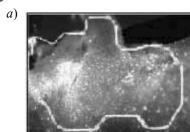
изображение трудно визуально проанализировать (непросто заметить отличия), а на результирующих визуализированных изображениях, представленных на рис. 2, отчетливо выделяются различные участки исследуемого объекта. Для выделения этих участков используются все исходные изображения одновременно.

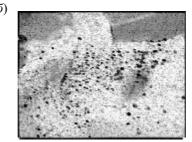
Puc. 1

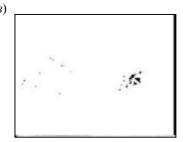
Справа от каждого из этих изображений на рис. 2 представлена гистограмма, которая соответствует распределению расстояний (d) в пространстве признаков от эталона до каждого из пикселов, составляющих изображение (K — количество пикселов с одинаковыми признаками). Эта гистограмма позволяет получить информацию об уникальности выбранного эталона. С помощью гистограммы можно выбрать начальное значение порога для бинаризации изображения и выделения объектов, похожих на эталон.


На рис. 3 представлен результат выделения объектов для трех эталонов путем выбора пороговых значений, соответствующих первому минимуму гистограмм.

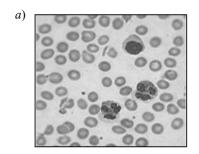
Изменяя значение порогового ограничения, можно варьировать результат визуализации в соответствии с контекстной информацией и опытом исследователя. Метод также позволяет выделить пикселы с редкими относительно признакового пространства свойствами. С этой целью можно использовать расстояние Махаланобиса, т.е. расстояние от вектора \mathbf{y} до среднего вектора \mathbf{m}_{x} семейства векторов \mathbf{X} , которое задается выражением

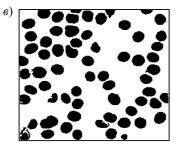

$$d(\mathbf{y}, \mathbf{m}_x) = (\mathbf{y} - \mathbf{m}_x)^T C_x^{-1} (\mathbf{y} - \mathbf{m}_x),$$


где C_x — ковариационная матрица семейства \mathbf{X} .


B нашем случае в качестве X выбрано семейство векторов пространства признаков, которые соответствуют содержательной области изображения.

На рис. 4, a эта область очерчена сплошной линией. На рис. 4, δ представлен результат визуализации с использованием расстояния Махаланобиса, заданного семейством **X**. Все пикселы, близкие по спектральным характеристикам к \mathbf{m}_x , имеют светлый оттенок, пикселы, существенно отличающиеся от \mathbf{m}_x , — темный. Однако темные пикселы могут различаться спектральными характеристиками. Чтобы найти сходные по редким спектральным характеристикам участки изображения, следует выбрать на интересующем участке темный пиксел и использовать его спектральные характеристики в качестве эталона. На рис. 4, a представлен результат выделения одной из групп пикселов с редкими спектральными характеристиками.




Puc. 4

После выделения объектов могут быть произведены измерения и рассчитаны морфометрические параметры: площадь, периметр, формфактор, минимальный и максимальный размеры, координаты "центра масс", ориентация, средняя интенсивность, логарифм оптической плотности и др. Результаты таких измерений для объектов двух типов продемонстрированы на примере обработки изображения, приведенного на рис. 5 (a — исходное изображение, δ — выделенное изображение первого типа, ϵ — второго) с помощью предобработки. В таблице приведены результаты измерения некоторых морфометрических параметров выделенных объектов.

Выделенные объекты	Параметры объектов			
	периметр,	диаметр	минимальный	максимальный
	МКМ	круга, мкм	размер, мкм	размер, мкм
Первого типа	86,43	25,85	22,09	29,26
	64,53	16,43	10,67	25,70
	63,11	15,43	14,10	18,45
	49,21	14,80	14,14	16,08
	47,56	12,46	8,06	18,92
Второго типа	63,80	19,38	14,29	21,95
	43,90	10,82	4,87	18,99
	51,80	13,87	13,62	16,94
	49,56	12,51	7,14	20,99
	66,87	20,59	20,15	21,91
	65,94	20,37	17,47	21,92
	66,53	20,40	19,16	21,54
	67,45	20,31	16,26	22,38
	62,53	19,77	18,90	20,17
	67,70	20,59	16,79	24,02
	62,28	19,41	17,07	19,97

Puc. 5

Предлагаемый метод визуализации внедрен в программное обеспечение аппаратнопрограммного комплекса "ДиаМорф", который применяется в медицине и биологии для проведения гистологических и цитологических исследований [7].

В основу программного обеспечения комплекса "ДиаМорф" были положены следующие принципы:

- гибкость и возможность адаптации к конкретным практическим задачам;
- способность системы функционировать в условиях информационной неоднородности с использованием интерактивного управления;
 - возможность непрерывной модернизации.

С помощью программного обеспечения комплекса "ДиаМорф" осуществляются ввод изображений препаратов в цифровом виде, интерактивное выделение объектов исследования, автоматическое вычисление их морфометрических и денситометрических параметров, статистическая обработка и создается архив. Организация базы данных позволяет осуществлять запросы и передавать данные по сети для использования комплекса "Диа-Морф" в телемедицине.

Заключение. Представлена методика компьютерной обработки медико-биологических многоспектральных изображений с использованием визуализации меры сходства с эталоном. Методика позволяет в интерактивном режиме подготовить к проведению автоматического измерения морфометрических параметров объектов в сложных случаях при наличии на изображении нескольких групп различных объектов. От известных способов она отличается целенаправленностью визуализации, позволяющей быстро выделить объекты интереса. Методика может быть адаптирована к конкретной задаче дешифрирования с помощью выбора признакового пространства, эталона и меры сходства. Мера сходства может быть подобрана в соответствии с заданными параметрами признаков исследуемого объекта, фона и шумовой компоненты. Выбор эталона может быть осуществлен с помощью известных численных значений признаков объекта или интерактивно пользователем, который выбирает характерный объект или характерную часть объекта на исходном изображении. Кроме того, методика позволяет обнаружить и выделить редкие по спектральным характеристикам объекты.

Методика внедрена в программное обеспечение аппаратно-программного комплекса "ДиаМорф", который применяют в медицине и биологии.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Know H.*, *Der S. Z.*, *Nasrabadi N. M.* Adaptive multisensor target detection using feature-based fusion // Opt. Eng. 2002. Vol. 41, N 1. P. 69—80.
- 2. Hyperspectral Image Analysis. Geomatica 10. [Электронный pecypc]: <www.pcigeomatics.com>.
- 3. [Электронный ресурс]: <www.leica-microsystems.com/Imaging Systems>.
- 4. CSIRO, Australia's national science agency. [Электронный ресурс]: <www.cmis.csiro.au/iap>.
- 5. Sheremetyeva T. A., Filippov G. N., Malov A. M. Visualization of multispectral images. International Symposium OPTRO 2005, Paris, France.
- 6. Патент РФ № 2267232. Способ преобразования изображений / *Т. А. Шереметьева, Г. Н. Филиппов.* 2005. Б.И. № 36.
- 7. ЗАО "ДиаМорф". [Электронный ресурс]: <www.diamorph.ru>.

Сведения об авторах

Андрей Михайлович Малов

аспирант; Санкт-Петербургский государственный университет информационных технологий, механики и оптики, кафедра компьютерной фотоники; E-mail: amalov@sbor.net

Татьяна Анатольевна Шереметьева

канд. физ.-мат. наук; Научно-исследовательский институт комплексных испытаний оптико-электронных приборов и систем, Сосновый Бор, Ленинградская обл.; E-mail: tsher@niiki.ru

Геннадий Николаевич Филиппов

Научно-исследовательский институт комплексных испытаний оптико-электронных приборов и систем, Сосновый Бор, Ленинградская обл.; ведущий инженер; E-mail: tsher@niiki.ru

Владимир Геннадьевич Филиппов

Научно-исследовательский институт комплексных испытаний оптико-электронных приборов и систем, Сосновый Бор, Ленинградская обл.; научный сотрудник; E-mail: vlafy@gmail.com

Рекомендована кафедрой компьютерной фотоники

Поступила в редакцию 29.05.08 г.