ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА

УДК 004.315

А. И. ГРУШИН, М. Л. РЕМИЗОВ, А. В. РОСТОВЦЕВ, Д. Д. НИКОЛАЕВ, ЧИНЬ КУАНГ КИЕН

ВЫЧИСЛИТЕЛЬНОЕ УСТРОЙСТВО ДЛЯ ОБРАБОТКИ РАДИОЛОКАЦИОННОЙ ИНФОРМАЦИИ

Рассмотрена аппаратная реализация алгоритма рекурсивного вычисления комплексной матрицы 64×64. При обработке радиолокационной информации требуется производить такое вычисление в режиме реального времени. Проанализирована и преобразована исходная формула, разработаны функциональные модели, проведено исследование точности вычислений, предложен способ представления информации, облегчающий проектирование, разработаны и верифицированы узлы устройства, разработана структура специализированного вычислительного устройства, проведена отладка устройства, синтезирован прототип.

Ключевые слова: вычислительное устройство, матрица, комплексное умножение с накоплением, числа с плавающей запятой, ПЛИС.

Введение. В статье [1] было показано, что при выделении сигналов на фоне интенсивных помех наиболее трудоемкой является процедура вычисления в режиме реального времени комплексной обратной (64×64)-матрицы R^{-1}_n , зависящей от выборки векторов y_n и целой положительной константы μ :

$$\mathbf{R}_{0}^{-1} = \mathbf{I}; \ \mathbf{R}_{n}^{-1} = \mathbf{R}_{n-1}^{-1} - \frac{1}{\mu + \tilde{\mathbf{y}}_{n} \mathbf{z}_{n}} \mathbf{z}_{n} \tilde{\mathbf{z}}_{n}, \ z_{n} = R_{n-1}^{-1} y_{n}, \ n = 1, 2, ..., 128,$$
(1)

где **I** — единичная матрица, y_n — 64-мерный комплексный вектор, коэффициенты действительной и мнимой частей которого — 12-разрядные целые числа со знаком, "" обозначает комплексное сопряжение и транспонирование, количество векторов y_n ($n = \overline{1, N}$) в одной выборке — 128.

Значение матрицы R^{-1} вычисляется на выборке из 128 векторов y_n , затем она передается в другое устройство для принятия решения об обнаружении полезного сигнала. За 5 с (рабочий цикл радиолокационной системы) необходимо вычислить матрицу для 576 различных выборок векторов с тремя значениями μ .

Вычисления на компьютере (Core 2 Duo, 2,66 ГГц, 1 Гбайт) занимают более 43 мин, т.е. не обеспечивают требуемой скорости, поэтому было принято решение реализовать вычисления на аппаратуре, имеющей параллельную архитектуру с созданием прототипа на программируемой логической интегральной схеме (ПЛИС).

Анализ формулы (1) и результатов моделирования позволил установить, что $\tilde{y}_n z_n$ — положительная величина, поэтому вычисления в формате single [2] обеспечивают необходимые диапазон и точность.

Вычислительное устройство. Схема вычисления и формат чисел. Для вычисления нового значения матрицы нужно провести 128 итераций по формуле (1). Каждую итерацию разделим на этапы (см. табл. 1).

m ~	7
Таолииа	1

№	Этап	Операции и объем вычислений	
1	$z_n = R_{n-1}^{-1} y_n$	64×64 MAC	
2	$\alpha = \mu + \tilde{y}_n z_n$	1×64 MAC	
3	$k = 1/\alpha$	1 DIV	
4	$w_n = -kz_n$	64 MUL	
5	$R_n^{-1} = R_{n-1}^{-1} - w_n \tilde{\mathbf{z}}_n$	64×64 MAC	

Операции деления DIV и умножения MUL выполняются над действительными числами, а умножения с накоплением MAC — над комплексными.

Моделирование показало, что использование 62-разрядных чисел с фиксированной запятой обеспечивает необходимый диапазон вычислений и точность до 10-го двоичного знака по сравнению с вычислениями программным способом в формате single, но производительность при этом меньше требуемой.

Использование чисел с плавающей запятой формата single позволяет автоматически решить проблему обеспечения необходимых диапазона и точности вычислений.

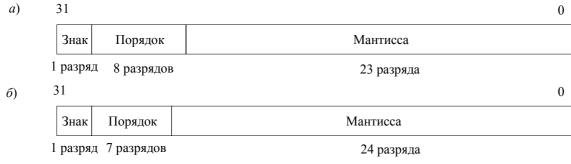

В табл. 2 проведено сравнение двух реализаций вычислителя.

Таблица 2

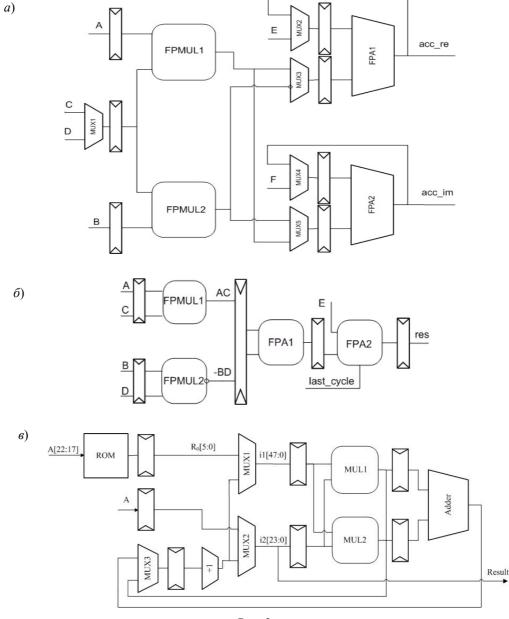
Характеристика	Фиксированная запятая	Плавающая запятая
	(62 разряда)	(формат single)
Занимаемая площадь кристалла, %	12	55
Рабочая частота, МГц	300	200—250
Время вычисления R^{-1} для одного μ , мс	5,6	1
Трудозатраты на разработку, чел.×мес.	~6	~15

Использование чисел с фиксированной запятой предполагает возможность применения более простых алгоритмов, обеспечения меньших трудозатрат, меньшей площади кристалла, но требование по производительности повлекло за собой выбор метода чисел с плавающей запятой.

Исследование алгоритма вычисления обратной матрицы показало, что для обеспечения необходимого диапазона вычислений достаточно 7-разрядного порядка, поэтому в работе предложен формат чисел с плавающей запятой, в котором скрытый бит мантиссы представлен в явном виде (рис. 1, a — формат single IEEE Standard 754, δ — предложенный формат чисел с плавающей запятой).

Puc. 1

В устройстве не поддержаны некоторые требования стандарта [2], это упростило аппаратуру и повысило быстродействие, при этом результат совпадает с данными, вычисленными с соблюдением всех требований стандарта.


Основные узлы вычислительного устройства.

- Узел преобразования целого числа в вещественное CI2F. На входе 12-разрядное целое число *Y* в прямом коде со знаком. На выходе вещественное число, содержащее знак, 7-разрядный порядок и 24-разрядную мантиссу, младшие 13 разрядов мантиссы всегда нулевые.
 - Узел комплексного умножения с накоплением МАС.

Узел вычисляет следующую функцию (рис. 2, a):

$$AC - BD + E + (AD + BC + F)i$$
,

где A + Bi, C + Di, E + Fi — комплексные операнды, коэффициенты A, B, C, D, E, F — числа с плавающей запятой.

Puc. 2

Сначала коммутатор MUX1 пропускает коэффициент C во входной регистр. Узел умножения чисел с плавающей запятой FPMUL1 вычисляет произведение AC, а узел FPMUL2 — BC. AC проходит через MUX3 на вход узла сложения чисел с плавающей запятой FPA1, на второй вход которого через коммутатор MUX2 проходит E. BC через MUX5 попадает на вход FPA2, где складывается с F.

Затем через MUX1 в узлы умножения проходит D, в FPMUL1 вычисляется произведение AD, в FPMUL2 — BD. AD через MUX5 попадает в FPA2, где складывается с BC + F, которое через MUX4 подается с выхода асс_re. BD через MUX3 попадает в FPA1, где вычитается из AC + E, которое через MUX2 подается с выхода асс_im. В режиме накопления через внешние коммутаторы на входы E и F подается ранее вычисленный комплексный результат.

Таким образом, на выходе асс_re имеем AC - BD + E, на асс_im — AD + BC + F. Время выполнения операции MAC 14 тактов, новые операнды на вход MAC можно подавать каждые 8 тактов.

— Узел комплексного умножения с накоплением MACR.

На вход узла MACR (см. рис. 2, δ) поступают два комплексных числа A+Bi и C+Di и действительное число E. Результат является положительным числом с плавающей запятой $\operatorname{res} = AC - BD + E$. Мантиссы чисел A и B содержат 24 разряда, а C и D — 11 разрядов.

МАСЯ состоит из двух узлов умножения чисел с плавающей запятой FPMUL1 и FPMUL2 и двух узлов сложения чисел с плавающей запятой FPA1 и FPA2. Для повышения точности разность двух полных 35-разрядных произведений AC-BD округляется до 35 разрядов к ближайшему. К полученному значению прибавляется E, и сумма округляется до 35 разрядов. Когда сигнал last_cycle = 1, происходит округление до 24 разрядов, т.е. большего из форматов исходных чисел.

Время выполнения операции MACR 12 тактов, новые операнды на вход MACR можно подавать каждые 4 такта.

Узел вычисления обратной величины Recipr.

Узел использует алгоритм Ньютона — Рафсона [3], итерации проводятся по формуле:

$$R_m = R_{m-1}(2 - MR_{m-1}),$$

где R_{m-1} — предыдущее приближение для матрицы, M — мантисса числа, обратная величина которого вычисляется.

В качестве нулевого приближения R_0 используется значение из таблицы, хранящейся в памяти ROM (см. рис. 2, ϵ), которое выбирается по шести старшим разрядам дробной части мантиссы числа, подающегося на вход узла.

Коммутатор MUX1 пропускает множимое R_0 , MUX2 пропускает M, в умножителе MUL1 в следующем такте вычисляется произведение $R_0M[23:0]$. Разность $2-MR_0$ вычисляется как дополнительный код произведения MR_0 .

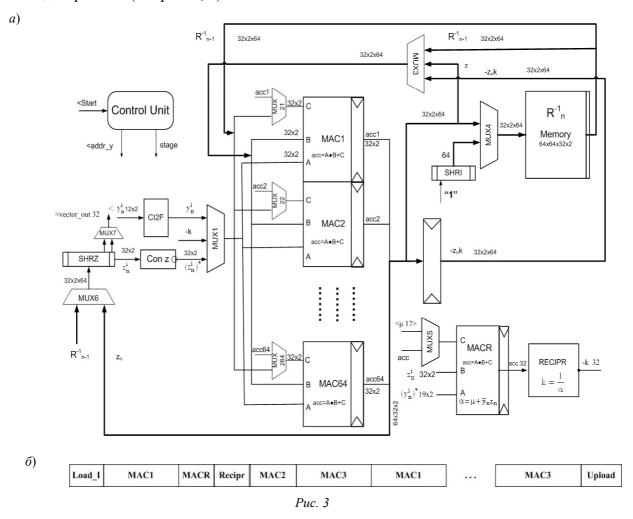
Второе умножение первой итерации выполняется сразу на двух умножителях MUL1 и MUL2, два произведения складываются в сумматоре Adder. Произведение $R_0(2-MR_0)$ округляется до 24 разрядов с помощью инкрементора. Таким образом, в результате первой итерации получается новое приближение мантиссы результата R_1 .

Последующие итерации выполняются аналогичным образом. Устройство выдает результат через 19 тактов после прихода операнда.

Структура вычислительного устройства. На рис. 3, *а* приведена структурная схема специализированного вычислительного устройства.

Основной объем вычислений происходит в блоке из 64 узлов MAC1—MAC64, каждый из которых вычисляет AC - BD + E + (AD + BC + F)i. Такой подход позволяет быстро выполнять действия с матрицами, предусмотренные табл. 1.

Блок МАС совершает вычисления одновременно над всеми компонентами одного столбца матрицы R^{-1}_n , что обусловливает оптимальную организацию памяти для хранения матрицы R^{-1}_n . Это память с глубиной 64 (количество столбцов) и разрядностью шины данных $64 \times 2 \times 32$.


В состав устройства также входят: узел преобразования целого числа в вещественное CI2F, узел MACR, узел вычисления обратной величины, узел управления Control Unit и др.

Uнтерфейс вычислительного устройства. Входной сигнал Start запускает работу устройства, параметр μ определяет возможность различать близко находящиеся цели, от него зависит точность вычислений, вектор y_n получают аналого-цифровым преобразованием сигнала с фазированной антенной решетки.

Адрес addr_у используется для чтения компоненты вектора y_n из внешней памяти, младшие 6 разрядов определяют номер компоненты, старшие 7 разрядов определяют номер вектора. В памяти хранятся 128 векторов выборки.

32-разрядный выход vector_out попеременно выдает коэффициент действительной и мнимой частей элемента матрицы, через него во внешнюю память для дальнейшей обработки передается вычисленная матрица.

Описание работы вычислителя. Вычисления начинаются с подачи сигнала Start, который вырабатывается один раз для обсчета всех 128 векторов y_n выборки. По сигналу Start обнуляются счетчики узла управления, и устройство начинает работать в соответствии с временной диаграммой (см. рис. 3, δ).

— Φ аза Load I (начальная загрузка).

В память обратной матрицы R^{-1}_n записывается вещественная единичная матрица I, для этого на соответствующий вход коммутатора MUX4 подаются нуль (коэффициент мнимой части), вещественная единица (коэффициент действительной части). В течение 64 тактов прописываются все 64 столбца памяти. В первом столбце вещественная единица записывается в первый (верхний) элемент, во втором столбце — во второй элемент и так далее. Для этого в сдвиговом регистре SHRI каждый такт на один разряд сдвигается единица, указывающая на нужный элемент столбца.

— Φ аза MAC1 (вычисление вектора z_n).

Длительность фазы 64 цикла работы MAC. Коммутатор MUX1 пропускает компоненту y_n , которая поступает в MAC1—MAC64 на вход множителя, MUX2 при подаче нулевой компоненты вектора y_n пропускает нуль, затем результат с выхода MAC (асс), MUX3 — столбец из памяти матрицы R^{-1}_n . В каждом цикле работы MAC1 меняются разряды адреса чтения y_n addr_y[5:0].

За 64 цикла работы блок MAC вырабатывает 64 компоненты вектора z_n , которые параллельно поступают в сдвиговый регистр SHRZ, где преобразуются в последовательный код во время фазы MACR .

— Φ аза MACR (вычисление знаменателя α). Длительность фазы 64 цикла работы MACR.

На вход множителя поступает 19 разрядов компоненты вектора y_n^i (знак, 7 разрядов порядка, 11 старших разрядов мантиссы) с выхода преобразователя целого в вещественное СІ2F, на вход множимого поступает компонента z_n из сдвигового регистра SHRZ. Через МUX5 на вход слагаемого в начальный момент времени поступает константа μ с входа специализированного вычислителя, затем через этот коммутатор проходит результат предыдущей операции MACR (acc).

В каждом цикле работы MACR изменяются младшие 6 разрядов адреса чтения y_n и происходит сдвиг на одну компоненту в регистре SHRZ. В конце фазы на выходном регистре определяется величина α , которая используется в фазе Recipr.

- Φ аза Recipr (вычисление обратной величины). За три итерации вычисляется величина k, длительность фазы 19 тактов.
 - Φ аза MAC2 (вычисление произведения $-kz_n$. Длительность фазы 1 цикл работы MAC.

С выхода узла Recipr через MUX1 на вход множителя MAC1—MAC64 поступает значение -k. На вход множимого через MUX3 поступают компоненты вектора z_n , на вход слагаемого через MUX2 подается нуль. Произведение записывается в регистр RgZK.

— Φ аза MAC3 (вычисление нового значения матрицы R^{-1}_n). Длительность фазы 64 цикла работы MAC.

Через MUX1 в блок MAC1—MAC64 на вход множителя поступает компонента вектора z_n , она получается в узле комплексного сопряжения ConZ. На входы множимого MAC1— MAC64 через MUX3 поступают компоненты вектора $-z_nk$. На вход слагаемого MAC1— MAC64 через MUX2 из памяти матриц поступает столбец предыдущего приближения матрицы R^{-1}_{n-1} . На выходе MAC1—MAC64 получается новое значение столбца матрицы, которое записывается в память матрицы через MUX4.

Каждый цикл работы MAC в память матрицы записывается новое значение столбца, в сдвиговом регистре SHRZ происходит сдвиг на одну компоненту вектора z_n (таким образом, в младших 64 разрядах регистра оказывается следующая компонента вектора z_n), из памяти считывается новый столбец. За 64 цикла работы MAC в память записывается новое значение матрицы.

По завершении фазы MAC3 значение старших семи разрядов адреса чтения компоненты вектора y_n addr y[12:6] увеличивается на единицу.

— Φ аза Upload (передача матрицы R^{-1} во внешнюю память по окончании обработки выборки векторов). Передача всей матрицы занимает 8192 такта.

Из памяти считывается столбец, через MUX6 он записывается в сдвиговый регистр SHRZ, где один раз в 2 такта происходит сдвиг вправо на одну компоненту. С младших 64 разрядов регистра SHRZ через MUX7 каждый такт считывается половина элемента матрицы: в первом такте 32 разряда мнимой части, во втором такте — 32 разряда действительной части. Эти действия повторяются 64 раза по числу столбцов матрицы R^{-1} . По окончании фазы устройство ожидает нового сигнала Start.

Фазы Load_I и Upload выполняются один раз за время обработки выборки векторов y_n , остальные фазы повторяются 128 раз.

Верификация и создание прототипа вычислительного устройства. Все узлы вычислительного устройства прошли верификацию в автономном режиме на случайных направленных тестах. Одинаковые воздействия подавались на RTL-модель узла на языке Verilog и на функциональную модель этого узла, написанную на языке C++, затем реакции обеих моделей сравнивались.

Функциональная модель не описывает всех подробностей алгоритмов обработки чисел с плавающей запятой, используемых в узле, а опирается на операции, выполняемые микропроцессором Pentium 4, что упростило создание функциональной модели и ускорило ее отладку и работу.

После автономной верификации узлы собирались в устройство, которое также верифицировалось на случайных направленных тестах. Устройство синтезировано на ПЛИС типа Virtex-5 xc5vlx330 [4]. Прототип устройства занимает 54 % ресурсов кристалла, рабочая частота 200 МГц. Вычисление матрицы для одной выборки занимает менее 10^{-3} с, производительность — ~6,5 млрд. операций с плавающей запятой в секунду.

Заключение. В работе описано вычислительное устройство с параллельной архитектурой для аппаратной реализации алгоритма рекурсивного вычисления комплексной матрицы 64×64. Проанализирована и преобразована исходная формула, разработаны функциональные модели, проведено исследование точности вычислений, предложен способ представления информации, облегчающий проектирование, разработаны и верифицированы узлы устройства, разработана структура специализированного вычислительного устройства, проведена отладка устройства, синтезирован прототип.

Производительность устройства и точность вычислений удовлетворяют требованиям.

Повышение точности вычислений улучшает возможность различать близко расположенные цели, для этого можно увеличить разрядность мантиссы используемого формата и уменьшить количество округлений при вычислениях за счет использования метода MAF (Multiply Add Fused).

Производительность устройства можно увеличить за счет полной конвейеризации узлов, использования более быстрых алгоритмов умножения и вычисления обратной величины и использования нескольких узлов MACR.

Реализация этих возможностей наряду с использованием заказной интегральной схемы позволяет увеличить производительность в 5—10 раз по сравнению с прототипом.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Черемисин О. П.* Адаптивные алгоритмы обработки сигналов в многоканальных приемных системах с антенными решетками // Радиотехника и электроника. 2006. Т. 51, № 9. С. 1087—1098.
- 2. IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Standard N 754. American National Standards Institute. Washington, DC, 1985.
- 3. Ercegovac M., Lang T. Digital Arithmetic. San Francisco: Morgan Kaufmann Publishers, 2004.
- 4. [Electronic resource]: http://www.xilinx.com/support/documentation/virtex-5.htm.

Сведения об авторах

Анатолий Иванович Грушин — канд. техн. наук; Институт точной механики и вычислительной техники РАН, Москва; вед. научный сотрудник;

E-mail: aigrushin@ipmce.ru

Максим Леонидович Ремизов — Институт точной механики и вычислительной техники РАН, Москва; инженер-конструктор; E-mail: mlremizov@ipmce.ru

 Артем Вадимович Ростовцев
 —
 Институт точной механики и вычислительной техники РАН, Москва; инженер-конструктор; E-mail: avrostovtsev@ipmce.ru

 Дмитрий Дмитриевич Николаев
 —
 студент; Московский физико-технический институт (государственный университет), факультет радиотехники и кибернетики; E-mail: ddnikolaev@ipmce.ru

 Куанг Киен Чинь
 —
 студент; Московский физико-технический институт (государственный университет); факультет радиотехники и кибернетики; E-mail: kkchin@ipmce.ru

Рекомендована кафедрой ЭВМ МФТИ Поступила в редакцию 03.10.08 г.