И. Р. Котов, О. В. МАЙОРОВА, В. Т. ПРОКОПЕНКО

ИЗМЕРЕНИЕ

ЛОКАЛЬНЫХ НАКЛОНОВ ДИФФУЗНО ОТРАЖАЮЩИХ ОБЪЕКТОВ С ИСПОЛЬЗОВАНИЕМ МЕТОДА ГОЛОГРАФИЧЕСКОЙ ИНТЕРФЕРОМЕТРИИ

Обсуждается проблема разработки голографических методов и систем контроля напряженно-деформированного состояния диффузно отражающих объектов, адаптированных к использованию при конструировании автоматизированных измерительных систем. Предложена принципиальная схема устройства системы оптической обработки двухэкспозиционных голографических интерферограмм для измерения локальных наклонов поверхности контролируемых объектов.

Ключевые слова: голографическая интерферометрия, интерферометр сдвига, диффузно отражающий объект.

Метод голографической интерферометрии широко используется при решении задач неразрушающего контроля и исследовании напряженно-деформированного состояния диффузно отражающих объектов. Особый интерес к этому методу обусловлен его высокой информативностью, возможностью получения трехмерных изображений изучаемых объектов и отсутствием материальных связей с ними.

При исследовании напряженно-деформированного состояния диффузно отражающих объектов нередко осуществляется наклон поверхности контролируемого объекта. При значительных смещениях плоскости интерференционные полосы становятся неразличимы на фоне шумов. Так, при смещениях поверхности более 10 мкм на 1 см ее длины проведение измерений практически невозможно. Известные способы и устройства контроля наклона поверхности либо обладают крайне низкой чувствительностью, либо не позволяют получать информацию о локальных смещениях [1, 2]. В настоящей статье для компенсации наклона исследуемой поверхности предлагается использовать интерферометрию сдвига.

Принципиальная схема предлагаемого устройства для измерения локальных наклонов поверхности представлена на рис. 1. Источник когерентного излучения 1 освещает голограмму 2, на которой зарегистрированы два состояния исследуемого объекта: до и после действия возмущения. Для обеспечения возможности исследования различных точек поверхности объекта голограмма жестко связана с двухкоординатной подвижкой. Для выделения конкретной точки поверхности объекта в плоскости локализации его действительного изображения расположена диафрагма 3. Линза 4 переводит изменение направления распространения объектных волн в смещение соответственных лучей на величину |d|, определяемую соотношением [3]

$$\left|d\right| = f(1 + \cos\theta)\gamma,\tag{1}$$

где f — фокусное расстояние линзы; θ — угол падения светового пучка, освещающего объект; γ — угол наклона поверхности объекта в окрестности анализируемой точки.

Для определения ориентации вектора смещения |d| за линзой 4 установлена оборачивающая призма 5, которая вращается с постоянной скоростью вокруг нормали, опущенной в точку пересечения голограммы с оптической осью устройства. Свет, прошедший через призму, падает на голографические дифракционные решетки 6 и 7 интерферометра, одна из которых закреплена неподвижно, а вторая перемещается. В результате движения решетки 7 периодически изменяется расстояние между решетками и относительное положение их штрихов. Фотоприемник 8 регистрирует контраст интерференционных полос, который меняется в процессе вращения призмы.

На выходе фотоприемника 8 формируется серия радиоимпульсов (U_i) (рис. 2). Временное

положение вершины импульса с максимальной амплитудой относительно начала вращения призмы определяет ориентацию вектора смещения, а расстояние между решетками 6 и 7 в этот момент времени однозначно связано с его величиной.

Расстояние между дифракционными решетками интерферометра измеряется с помощью канала устройства,

который содержит эталонную двухэкспозиционную спеклограмму 9 и фотоприемники 10 и 11. На спеклограмме регистрируется эталонное смещение диффузного объекта. Вектор

смещения ориентирован перпендикулярно штрихам решеток интерферометра. В момент времени, когда расстояние между решетками соответствует величине эталонного вектора смещения, амплитуда сигнала на выходе фотоприемника 9 становится максимальной. Изменение расстояния между решетками с этого момента времени можно определить, отсчитывая число импульсов с выхода фотоприемника 10, и, следовательно, можно измерять абсолютную величину вектора смещения |d|.

Эта операция осуществляется при помощи блока обработки сигналов 12 (см. рис. 1), измеряющего временной интервал между вершинами радиоимпульсов, формируемых на выходах фотоприемников 8 и 11. Для определения этого интервала производится дифференцирование огибающей импульсов с выходов фотоприемников 8 и 11, а затем формируется импульс, длительность которого равна временному интервалу между вершинами радиоимпульсов. Длительность этого импульса измеряется счетчиком, на вход которого поступают импульсы счета с выхода фотоприемника 10. Так как расстояние между решетками интерферометра, соответствующее появлению вершины импульса с выхода фотоприемника 11, известно, можно определить абсолютное расстояние между решетками, соответствующее временному положению вершины сигнала приемника 8.

Рис. 2 Схема блока обработки сигналов представлена на рис. 3, где 8, 10, 11 — фотоприемники; 22, 23 — детекторы; 13, 14, 17, 18 — дифференциаторы; 15, 16 — усилители-ограничители; 19 — триггер; 20 — ключ, 21 — счетчик импульсов. Абсолютная величина вектора смещения соответственных лучей определяется формулой

$$|d| = 2h \operatorname{tg} \alpha \,, \tag{2}$$

где α — угол Брегга для диффракционных решеток *6* и *7*; *h* — расстояние между решетками, соответствующее максимуму сигнала приемника *8*.

С учетом уравнений (1) и (2) выражение для определения угла наклона поверхности объекта в окрестности исследуемой точки примет следующий вид:

$$\gamma = \frac{2h \text{tg}\alpha}{f(1 + \cos\theta)}.$$

Процесс измерений с использованием метода голографической интерферометрии можно разделить на три основных этапа:

— выбор методики исследования и регистрация голограммы;

— оптическая обработка голографической интерферограммы и счет интерференционных полос;

— расшифровка и математическая обработка полученной информации.

В настоящее время хорошо разработаны первый и третий этапы. Однако второму этапу — процессу исследований и приборной реализации обработки голографических интерферограмм — уделено недостаточное внимание. Настоящая статья направлена на частичную ликвидацию пробела в этом вопросе. Предложенное устройство может быть использовано при разработке аппаратуры для исследования напряженно-деформированного состояния диффузно отражающих объектов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Вест Ч. Голографическая интерферометрия. М.: Мир, 1982. 504 с.
- 2. Клименко И. С. Голография сфокусированных изображений и спекл-интерферометрия. М.: Наука, 1985. 224 с.
- 3. *Tiziani H. J.* A study of the use a laser speckle to measure small tilts of optically rough surfaces accurately // Optical Communication. 1972. Vol. 5, N 12. P. 271—276.

Сведения об авторах

Игорь Ростиславович Котов	—	канд. техн. наук; Санкт-Петербургский государственный медицинский университет им. И. П. Павлова, лаборатория голографии
Ольга Валериевна Майорова	_	аспирант; Санкт-Петербургский государственный университет ин- формационных технологий, механики и оптики, кафедра твердотель- ной оптоэлектроники; E-mail: maiorova olga@yahoo.com
Виктор Трофимович Прокопенко	_	д-р техн. наук, профессор; Санкт-Петербургский государственный университет информационных технологий, механики и оптики, ка- федра твердотельной оптоэлектроники
Рекомендована кафедрой твердотельной оптоэлектроники СПбГУ ИТМО		Поступила в редакцию 07.12.09 г.