ИССЛЕДОВАНИЯ ТЕПЛОВЫХ ХАРАКТЕРИСТИК ПРИБОРОВ И МАТЕРИАЛОВ

УДК 536.2

В. А. КОРАБЛЕВ, Ю. Т. НАГИБИН, А. В. ШАРКОВ

ИССЛЕДОВАНИЕ РЕЖИМОВ РАБОТЫ ЛАМПЫ НАКАЧКИ ЛАЗЕРА ПРИ РАЗЛИЧНЫХ СПОСОБАХ ОХЛАЖДЕНИЯ

Приводится описание экспериментальной установки для испытаний импульсных ламп накачки лазера и результаты исследований влияния условий охлаждения на спектральный состав и мощность тепловыделений.

Ключевые слова: твердотельный лазер, лампа накачки, система охлаждения, водовоздушное охлаждение, селективно-поглощающие добавки, спектр излучения.

Импульсные газоразрядные лампы являются наиболее распространенным источником накачки активных элементов твердотельных лазеров [1]. Так как плотность тепловыделений на поверхности баллона лампы велика, то для создания компактной и экономичной системы охлаждения необходимо предусмотреть возможность интенсификации теплообмена путем увеличения скорости протока теплоносителя, вдува в поток жидкости мелкодисперсных пузырей воздуха и использования процесса кипения на поверхности.

Для анализа эффективности этих методов на кафедре компьютерной теплофизики и энергофизического мониторинга СПбГУ ИТМО была создана экспериментальная установка, главным элементом которой является проточный калориметр. Конструкция калориметра схематич-

но представлена на рис. 1. Импульсная лампа 1 помещена в канал охлаждения 2, наружной стенкой которого является трубка из кварцевого стекла. На входе и выходе канала установлены чувствительные элементы многоспайной дифференциальной термопары, с помощью которой можно измерить перепад температуры в охлаждающей жидкости, возникший вследствие тепловыделений в баллоне лампы и поглощенного в толще жидкости оптического излучения.

Канал охлаждения 2 помещен в оболочку 3. Внутри оболочки сделан кольцевой канал для прокачки теплоносителя, охлаждающего внутреннюю поверхность оболочки, на которую падает мощный световой поток от дуги лампы. Для эффективного поглощения излучения поверхность оболочки, обращенная к лампе, зачернена. В оболочке 3 сделано окно из кварцевого стекла для исследования спектра излучения лампы. На входе и выходе кольцевого канала также установлены чувствительные элементы многоспайной дифференциальной термопары, позволяющей измерить нагрев жидкости вследствие воздействия излучения лампы.

Схема экспериментальной установки приведена на рис. 2. Жидкостные каналы калориметра *1* последовательно подключены к жидкостному термостату *2* типа T16A. Расход циркулирующей жидкости в замкнутом контуре измерялся с помощью ротаметра. Для питания лампы накачки ИНП 7/70 использовался блок питания *3* типа БП 5000. Излучение лампы через окно в корпусе калориметра и оптическую систему *4* подавалось в спектрограф *5* типа ИСП-51. Для измерения сигнала от термопар использовались цифровой вольтметр *6* типа В7-21 и потенциометр 7 типа H37.

Для создания водовоздушного мелкодисперсного потока в каналах охлаждения установлен компрессор 8, воздух из которого закачивается в поток жидкости через форсунку.

Puc. 2

Мощность поглощенной энергии $\Phi_{1,2}$ в каналах калориметра определяется по формуле [2] $\Phi_{1,2} = cG\Delta t_{1,2}$,

где G и c — расход и удельная теплоемкость теплоносителя; $\Delta t_{1,2}$ — перепад температур между входом и выходом каналов охлаждения лампы и оболочки.

На описанной экспериментальной установке исследовались следующие режимы охлаждения лампы:

— охлаждение дистиллированной водой при различных расходах: от 0,07 до 0,12 кг/с;

— охлаждение двухфазным потоком при расходах воды 0,1 кг/с и воздуха $4,10^{-5}$ кг/с;

— охлаждение потоком воды с температурой, близкой к температуре кипения;

— охлаждение дистиллированной водой с введением селективно-поглощающих добавок (хромпика) в концентрациях *n* от $2,5 \cdot 10^{-7}$ до $1,5 \cdot 10^{-6}$ кг/м³.

Для выяснения влияния режима охлаждения на спектральные характеристики излучения производилось фотографирование спектра излучения лампы при вышеуказанных режимах на спектрографе ИСП-51. Для идентификации длин волн дополнительно фотографировался спектр излучения железа. Проявленная и зафиксированная фотопластинка исследовалась на микрофотометре, который вычерчивал плотность почернения сфотографированного спектра.

Для расчета спектральной плотности *Е* лучистого потока была проведена градуировка фотометра по планковскому спектру излучения температурной лампы.

Исследования спектрального состава излучения лампы при охлаждении двухфазным потоком воды с мелкодисперсными пузырями показали, что из-за многочисленных светопреломлений на границе воздушных пузырей излучение лампы равномерно во всем диапазоне длин волн ослабляется на 27 %. Аналогичный результат получен и при использовании кипящего потока воды.

Спектральная плотность излучения лампы при различных концентрациях хромпика в потоке охлаждающей жидкости графически представлена на рис. 3 следующими кривыми: 1 -чистая вода; 2 -раствор хромпика с концентрацией $n=2,5\cdot10^{-7}$ кг/м³, $3 - n=5\cdot10^{-7}$ кг/м³, $4 - n=7,5\cdot10^{-7}$ кг/м³, $5 - n=10^{-6}$ кг/м³, $6 - n=1,25\cdot10^{-6}$ кг/м³, $7 - n=1,50\cdot10^{-6}$ кг/м³. Анализ графика показывает, что концентрация хромпика существенно влияет на поглощение излучения в диапазоне длин волн менее 0,5 мкм, в диапазоне более длинных волн ослабление излучения лампы не было зафиксировано. С помощью селективно-поглощающих добавок можно уменьшить воздействие ультрафиолетового излучения на активный элемент и другие части квантрона, подобрав оптимальную концентрацию с помощью вышеописанной методики.

Баланс тепловыделений в каналах был исследован при охлаждении лампы накачки потоком жидкости с различными концентрациями хромпика и водовоздушным потоком. Расчет выделившейся в канале охлаждения лампы тепловой мощности Φ_1 и тепловой мощности Φ_2 , поглощенной оболочкой, проводился по приведенной выше формуле.

При проектировании системы охлаждения квантрона с раздельными контурами для лампы и активного элемента использование селективного поглощения в коротковолновой части спектра позволяет существенно снизить тепловую нагрузку на активный элемент, в результате чего уменьшается его рабочая температура. Это имеет большое значение для лазерных сред, активированных эрбием и гольмием, так как повышается КПД лазера. Тепловая мощность, поглощенная оболочкой, снизилась практически вдвое, при этом спектральная плотность излучения в области накачки активных сред (см. рис. 3) практически не изменилась.

Использование водовоздушного охлаждения показало, что в канале охлаждения лампы выделяется тепловой поток, примерно на 30 % превышающий величину теплового потока при однофазном охлаждении, причем эта величина мало зависит от расхода жидкости. Использование двухфазного потока интенсифицирует теплообмен в каналах, однако необходимость применения компрессора и сепаратора воздуха на выходе из канала охлаждения усложняет конструкцию и делает установку более шумной.

По результатам исследований можно сделать следующие выводы:

— описанная экспериментальная установка и методика исследований режимов работы лампы накачки могут быть использованы при разработке систем охлаждения лазеров, в том числе и с применением новых активных сред;

— использование селективно-поглощающих добавок в теплоноситель позволяет перераспределить тепловые потоки в квантроне и улучшить тепловой режим активного элемента;

— интенсификация теплообмена на элементах квантрона с помощью водовоздушных потоков нецелесообразна.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Малинин А. Н., Шуабов А. К., Шимон Л. Л.* и др. Новые высокоэффективные электроразрядные лампы видимого и ультрафиолетового диапазонов спектра // Прикладная физика. 2006. № 1. С. 27—29.
- 2. Калориметрия. Теория и практика // В. Хеминегер, Г. Хене. М.: Химия, 1990. 176 с.

Сведения об авторах

канд. техн. наук, доцент; Санкт-Петербургский государственный уни-Владимир Антонович Кораблев верситет информационных технологий, механики и оптики, кафедра компьютерной теплофизики и энергофизического мониторинга; E-mail: KVA@grv.ifmo.ru Юрий Тихонович Нагибин канд. техн. наук, доцент; Санкт-Петербургский государственный университет информационных технологий, механики и оптики, кафедра твердотельной оптоэлектроники; E-mail: nagibin77@mail.ru Александр Васильевич Шарков д-р техн. наук, профессор; Санкт-Петербургский государственный университет информационных технологий, механики и оптики, кафедра компьютерной теплофизики и энергофизического мониторинга; E-mail: Sharkov@ grv.ifmo.ru Рекомендована кафедрой Поступила в редакцию компьютерной теплофизики 07.12.09 г.

и энергофизического мониторинга