Ю. А. БАЛОШИН, А. А. СОРОКИН, А. Н. ВОЛЧЕНКО

ЭЛЕКТРОДИНАМИЧЕСКАЯ МОДЕЛЬ ВЧ-БЛИЖНЕПОЛЬНОГО ЗОНДИРОВАНИЯ ФИЗИЧЕСКИХ ОБЪЕКТОВ

Рассмотрена электродинамическая модель ВЧ-ближнепольного зондирования физических объектов (на примере органических и неорганических растворов веществ в дистиллированной воде). Показано, что с поверхности физического объекта можно получать информацию о самом объекте и процессах, происходящих в нем. Информационный сигнал определяется, прежде всего, диэлектрической проницаемостью физического объекта.

Ключевые слова: электродинамическая модель, ВЧ-ближнепольное зондирование, диэлектрическая проницаемость, информационный сигнал.

Диагностика внутреннего состояния различных физических объектов актуальна для микроэлектроники, материаловедения, дефектоскопии, прикладной химии. Одним из наиболее успешных и перспективных методов такой диагностики может стать ВЧ-ближнепольное зондирование.

Однако для более глубокого понимания метода и развития его возможностей в прикладных исследованиях необходимо построение относительно простой электродинамической модели, позволяющей качественно и количественно оценивать отклик ВЧ-ближнепольной измерительной системы при взаимодействии ее с исследуемым физическим объектом. По отклику можно судить о внутренней структуре этого объекта и ее изменениях под воздействием различных внешних факторов. Для этого обратимся к результатам экспериментальных исследований различных растворов веществ (органических и неорганических в дистиллированной воде), полученных нами с помощью измерительного комплекса и реализуемого в нем метода ВЧ-ближнепольного зондирования, которые подробно рассмотрены в работе [1].

Эксперимент № 1. Объект исследования — стеклянные ампулы, заполненные одинаковыми по объему различными растворами веществ в дистиллированной воде (табл. 1).

Таблица 1

	1 00000000 1
Номер	Исследуемый объект
ампулы	
1	Пустая ампула
2	Дистиллированная вода
3	Раствор NaCl 5 %
4	Раствор NaCl 1 %
17	Гексан
18	Толуол
19	Ацетон
20	Изопропиловый спирт (ИПС)
21	NaCl
22	N ₂ SO ₄
23	CuSO ₄
24	H ₂ SO ₄
25	Дистиллированная вода
26	Этилацетат
27	Бутанол
28	Бензиловый спирт
29	Диоксан + H ₂ O (0,8/0,2)
30	Диоксан + H ₂ O (0,415/0,585)

Цель исследований — определение путем ВЧ-ближнепольного зондирования уровня информационного сигнала, получаемого от раствора в каждой ампуле, относительно выбранной нормы (опорная ампула № 25, заполненная дистиллированной водой). За уровень информационного сигнала примем относительную частоту ВЧ-генератора. Результаты исследований приведены на рис. 1, с его помощью можно сделать следующие выводы:

— уровни сигналов органических (область "n") и неорганических (область "m") растворов противоположны по отношению к уровню ω_0 , полученному от дистиллированной воды. Другими словами, возможно, используя ВЧ-ближнепольное зондирование, различать растворы различной природы;

— уровни сигналов определяются концентрацией растворенного вещества на единицу объема растворителя (см. рис. 1 — сигналы от ампул № 3 и 4, 29 и 30).

Эксперимент № 2 является своеобразным продолжением предыдущего исследования. Объект исследования — стеклянные ампулы с органическими жидкостями, представленные Государственным институтом прикладной химии (ГИПХ), причем, по согласованию с сотрудниками ГИПХ, содержание ампул было неизвестным.

Каждая ампула содержала органическое вещество в одинаковой концентрации на единицу объема растворителя (воды), были известны значения диэлектрической проницаемости вещества $\varepsilon_{\rm B}$ (табл. 2).

	Таблица 2
Номер ампулы	ε _в (по ГОСТ)
1	37,00—40,00 (использовалось значение 37,00)
2	54,95
3	53,33
4	51,02
5	56,17
6	58,16
7	58,88
8	58,68

Результаты экспериментальных исследований приведены на рис. 2. Цель исследования — установить связь уровня информационного сигнала (цифры со штрихом) со значениями $\varepsilon_{\rm B}$

органических веществ (цифры) при ВЧ-ближнепольном зондировании их растворов. Как видно из рисунка, наблюдается корреляция значений є и нормированных значений показаний прибора, а именно: с увеличением значения є повышается уровень относительной частоты прибора.

Puc. 2

Электродинамическая модель ВЧ-ближнепольного зондирования. Электродинамическую задачу ВЧ-ближнепольного зондирования будем анализировать исходя из схемы, приведенной на рис. 3.

ВЧ-антенна расположена в однородном верхнем полупространстве (Z > 0) с действительным значением диэлектрической проницаемости є. Нижним полупространством (Z < 0), которое характеризуется комплексной диэлектрической проницаемостью вещества $\varepsilon_{\rm B}^* = \varepsilon_{\rm B} - i\varepsilon_{\rm B}^{**}$ будем считать исследуемый физический объект (раствор в ампуле). Такая среда будет поглощать энергию электромагнитного поля ВЧ-антенны. Это поглощение описывается законом Бугера [2]

$$I_Z = I_0 \exp(-\alpha Z), \qquad (1)$$

где $\alpha = \frac{4\pi}{\lambda} \varepsilon_{\rm B}^{**}$ — коэффициент поглощения электромагнитного поля веществом на единицу

длины. При оценке коэффициента α и глубины проникновения электромагнитного поля ВЧантенны в вещество для нашей модели наиболее важным является определение природы этого поглощения — является оно резонансным или нерезонансным. *Нерезонансное поглощение* определяется потерями энергии электромагнитного поля при его взаимодействии со свободными зарядами в веществе, концентрация которых определяет проводимость последнего $\sigma_{\rm B}$. Для этого случая $\epsilon_{\rm B}^{**}$, а значит и α , определяются как

$$\varepsilon_{\rm B}^{**} = \frac{\sigma_{\rm B}}{\omega\varepsilon_{\rm B}}, \ \alpha = \frac{4\pi}{\lambda} \frac{\sigma_{\rm B}}{\omega\varepsilon_{\rm B}}.$$
 (2)

Резонансное поглощение характеризуется энергетическими потерями поля при взаимодействии его со связанными зарядами в веществе (дипольными моментами атомов и молекул). В этом случае $\varepsilon_{\rm B}$ и $\varepsilon_{\rm B}^{**}$ определяются через дисперсионные соотношения Крамерса-Кронинга [2] как ε (ω) и $\varepsilon_{\rm P}^{**}(\omega)$.

Обратимся теперь к параметрам ВЧ-антенны из работы [1]. Излучение антенны в воздухе (при отстройке) происходит на частоте $f = 4 \cdot 10^6$ Гц, что соответствует длине волны $\lambda = 75$ м. Отношение диаметра антенны D = 25 мм к длине волны получается менее 0,0001. Для таких параметров антенны резонансное поглощение в воде и водных растворах можно не учитывать.

Что касается нерезонансного поглощения, то этот процесс характеризуется эффективной глубиной проникновения $d_{3\phi\phi}$ (рис. 3) электромагнитного поля в вещество, которую можно определить из формулы (1) как:

$$\alpha Z \to \alpha d_{\varphi \varphi \varphi} = 1 \to d_{\varphi \varphi \varphi} = \frac{1}{\alpha}.$$
 (3)

Ниже приведены значения α дистиллированной воды 9 %-ного раствора NaCl для электромагнитного поля с частотой, равной единицам мегагерц (соизмеримой с частотой ВЧ-антенны), взятые из работы [3], и значения $d_{3\phi\phi}$ (данные по σ_{H_2O} и σ_{NaCl} из работы [3] — усредненные).

$$\sigma_{\rm H_2O} = (10^{-4} - 10^{-5}) \text{Cm} \cdot \text{m}^{-1} \rightarrow \alpha = 4, 7 \cdot 10^{-2} \text{m}^{-1} \rightarrow d_{\rm spp} = 2, 1 \cdot 10^2 \text{ m}.$$

$$\sigma_{\rm NaCl} = (2, 6 - 3, 3) \text{Cm} \cdot \text{m}^{-1} \rightarrow \alpha = 1, 41 \cdot 10^4 \text{ m}^{-1} \rightarrow d_{\rm spp} = 7 \cdot 10^{-5} \text{ m}.$$

Как видно из этих соотношений, значения глубины проникновения электромагнитного поля в растворы (кроме дистиллированной воды) позволяют рассматривать ВЧ-зондирование как поверхностное, в отличие от метода СВЧ-зондирования с частотой электромагнитного поля в сотни мегагерц, при котором проникновение поля в вещество может достигать единиц-десятков сантиметров [4].

Таким образом, в нашей задаче физический объект (растворы) рассматривается как вещество с характерным значением $d_{3\phi\phi}$, обладающее диэлектрической проницаемостью $\varepsilon_{\rm B}$ и проводимостью $\sigma_{\rm B}$, определяющими особенности процесса нерезонансного поглощения в этом веществе. Такую модель можно использовать не только для растворов. Это обстоятельство и определяет основную специфику рассматриваемой электродинамической модели, а именно: поглощающая среда в ближней зоне ВЧ-антенны существенно влияет на квазистационарную компоненту поля этой антенны и, как следствие — приводит к изменению комплексного сопротивления (импеданса) ВЧ-антенны, а значит и частоты ВЧ-генератора, частью колебательной системы которого она является. В результате этого влияния формируется информационный сигнал, соответствующий изменению частоты $\delta\omega$ генератора в область "*m*" или "*n*" (см. рис. 1) относительно уровня опорной частоты, полученной от ампулы с дистиллированной водой $\omega_0 = 2\pi f_0$. Для веществ, которые являются диамагнетиками либо парамагнетиками (к ним можно отнести исследуемые растворы), $\delta\omega$ генератора будет определяться через соотношение:

$$\delta \omega = \frac{\delta C}{C_{\rm spp}} \omega_0, \qquad (4)$$

где δC — изменение емкостной составляющей импеданса антенны, $C_{3\phi\phi}$ — эффективная емкость ВЧ-антенны, которая отлична от емкости этой антенны в воздухе C_0 [4]:

$$C_{\mathrm{h}\phi\phi} = \frac{\varepsilon_{\mathrm{B}}D^2}{d_{\mathrm{h}\phi\phi}}.$$
(5)

Все вышеизложенное позволяет качественно объяснить результаты исследования физических объектов с помощью метода ВЧ-ближнепольного зондирования.

На рис. 1 для области сигналов "*m*" (неорганические растворы) в предположении, что $\delta \omega = (\omega_m - \omega_0) > 0$, получим, воспользовавшись формулой (4):

$$\delta\omega = \omega_0 \frac{C_m - C_0}{C_0} > 0 \tag{6}$$

С помощью формул (2), (3) и (5) выражение (6) можно преобразовать в неравенство, определяющее уровни сигналов от неорганических растворов.

$$\varepsilon_m \sigma_m > \varepsilon'_0 \sigma_0, \tag{7}$$

где ε_m и σ_m — соответственно диэлектрическая проницаемость и удельная проводимость исследуемого вещества, а ε'_0 и σ_0 — дистиллированной воды.

Для области "*n*" аналогичным образом получим неравенство для органических растворов:

$$\varepsilon_n \sigma_n < \varepsilon'_0 \sigma_0. \tag{8}$$

Оценим условия (7) и (8) на примере конкретных растворов. Раствор NaCl (ампулы № 3 и 4)

 $\varepsilon_{\text{NaCl}} = \varepsilon_m = 5.9; \ \sigma_m = 3 \text{ C} \cdot \text{MM}^{-1},$ $\varepsilon_{\text{H}_2\text{O}} = \varepsilon'_0 = 75.9; \ \sigma_0 = 10^{-4} - 10^{-5} \text{ C} \cdot \text{MM}^{-1}.$

Очевидно, что эти данные обеспечивают выполнение неравенства (7), которое определяет условие формирования отношения уровня сигнала ВЧ-антенны от неорганических растворов к уровню дистиллированной воды.

Если обратиться к органическим растворам, то в качестве примера была рассмотрена ампула №19 с раствором ацетона:

$$\varepsilon_{a} = \varepsilon_{n} = 20,74; \ \sigma_{n} = 10^{-9} \text{ C} \cdot \text{MM}^{-1},$$

 $\varepsilon_{H_{2}O} = \varepsilon'_{0} = 75,9; \ \sigma_{0} = 10^{-4} - 10^{-5} \text{ C} \cdot \text{MM}^{-1}.$

Эти значения подтверждают справедливость условия (8) при формировании уровней сигналов от органических растворов.

Заключение. Рассмотренная на примере водных растворов количественная электродинамическая модель ВЧ-ближнепольного зондирования подтверждает гипотезу о том, что достоверную информацию о веществе и процессах, происходящих в нем под воздействием различных факторов, можно получить с поверхности вещества, основываясь на уровне информационного сигнала, который связан со значениями диэлектрической проницаемости и проводимости этого вещества и их изменениями при наличии внешнего воздействия.

СПИСОК ЛИТЕРАТУРЫ

- 1. Балошин Ю. А. и др. Метод диагностики функциональной активности тканей и органов биообъектов // Изв. вузов. Приборостроение. 2011. Т. 54, № 3. С. 37—43.
- 2. Борн М., Вольф Э. Основы оптики. М.: Наука, 1973. 865 с.
- 3. Самойлов В. О. Медицинская биофизика. СПб: Спец. лит., 2007. 560 с.
- 4. Кинг Р. Антенны в материальных средах. М.: Мир, 1984. 824 с.

		Сведения об авторах
Юрий Александрович Балошин		д-р техн. наук, профессор; Санкт-Петербургский государственный
		университет информационных технологий, механики и оптики, ка-
		федра физики
Анатолий Александрович Сорокин		канд. техн. наук, доцент; Балтийский государственный технический университет "BOEHMEX" им. Д. Ф. Устинова, кафедра радиоэлектронных систем управления, Санкт-Петербург;
		E-mail: an_sor@mail.ru
Александр Николаевич Волченко	_	аспирант; Санкт-Петербургский государственный университет ин- формационных технологий, механики и оптики, кафедра физики; E-mail: wolf2684@mail.ru
Рекомендована кафедрой физики		Поступила в редакцию 22.06.11 г.