73

П. С. БЕЛОМУТСКАЯ, Т. М. ДАНИЛОВА, И. А. ХРАМЦОВСКИЙ

ОПРЕДЕЛЕНИЕ

ОПТИЧЕСКИХ ХАРАКТЕРИСТИК ЭЛЕМЕНТОВ ЛАЗЕРНОЙ ТЕХНИКИ МЕТОДОМ ВНУТРИРЕЗОНАТОРНЫХ ПОТЕРЬ ИЗЛУЧЕНИЯ

Предложена трехзеркальная схема измерения оптических потерь излучения на внутрирезонаторных элементах ионных лазеров. Рассмотрены особенности измерения потерь излучения на оптических элементах с использованием зеркала с регулируемой отражательной способностью и по методу калиброванных потерь. Сопоставлены результаты эллипсометрических исследований изменения поляризационно-оптических характеристик поверхностного слоя деталей и внутрирезонаторных потерь оптического излучения на элементах лазерной техники при их полировании.

Ключевые слова: оптические потери, эллипсометрические измерения, оптические характеристики поверхностного слоя.

Критерием качества оптических внутрирезонаторных элементов, используемых для получения одночастотного режима генерации излучения ионных лазеров в видимой и ультрафиолетовой областях спектра, является величина потерь излучения на этих элементах. Для объективной оценки качества изготовления внутрирезонаторных элементов необходимо различать потери оптического излучения, вызванные образованием неоднородного поверхностного слоя (ПС), и потери, связанные с ослаблением излучения в объеме материала, из которого выполнена деталь. Опыт практического использования кварцевого стекла в качестве основного материала для изготовления внутрирезонаторных элементов ионных лазеров показал, что изделия одной партии, к которым предъявляются одинаковые требования по классу

чистоты и точности формы поверхности, могут значительно отличаться по своим физикотехническим характеристикам, определяемым, при прочих равных условиях технологической обработки, оптическими свойствами образующегося поверхностного слоя [1, 2].

Традиционные методы контроля качества технологической обработки поверхности детали, в том числе и интерферометрические, не позволяют непосредственно судить о потерях лазерного излучения, вносимых элементом в оптический резонатор лазера.

Однако в последнее время появились методы измерения, основанные на сравнении "френелевских" потерь, вносимых в оптический резонатор поворотной плоскопараллельной пластинкой, с потерями излучения на контролируемой детали [3, 4]. Наряду с этим были созданы установки, позволяющие, благодаря применению в них газоразрядных трубок Не-Ne-лазеров с высокой стабильностью параметров излучения, с высокой точностью [3, 4] проводить измерения потерь излучения на оптических элементах различного фукционального назначения. Однако область измерения потерь излучения при этом ограничивается коэффициентом усиления активной среды, используемой в газоразрядной трубке Не—Ne-лазеров [5].

В настоящей статье представлен анализ особенностей измерения внутрирезонаторных потерь излучения на элементах лазерной техники (окнах Брюстера, призмах, зеркалах оптического резонатора, модуляторах азимутальной и фазовой анизотропии поляризационного излучения и т.п.) с использованием двух методов: метода калиброванных потерь оптического излучения и метода с регулируемой отражательной способностью зеркал трехзеркального оптического резонатора.

Как известно, максимальная величина потерь астах, вносимых в двухзеркальный резонатор лазера, определяется условием порога генерации оптического излучения [4]:

$$R_1 R_2 G(1 - \alpha_{\max}) = 1, \quad G = \exp 2K'_{\nu} L, \quad K'_{\nu} = K_{\nu} - \chi \frac{L_1}{L}, \quad (1)$$

где R_1, R_2 — коэффициенты отражения зеркал резонатора; K_v, K'_v — коэффициенты усиления активной среды; *L* — длина газоразрядного канала трубки лазера; *L*₁ — длина оптического резонатора; х — коэффициент дифракционных потерь.

При малых значениях коэффициентов K_{v}, K'_{v} величина максимальных потерь α'_{\max} , которые можно измерить на установке с двухзеркальным резонатором, определяется по формуле

$$\alpha'_{\max} = K_{\nu}L - \chi L_1 - \alpha_{\pi}; \qquad (2)$$

величина α_д характеризует следующие дополнительные потери в резонаторе лазера: потери излучения на эталонных плоскопараллельных пластинках оптического компенсатора; потери излучения на зеркалах резонатора; дифракционные потери, связанные с увеличением длины резонатора при установке оптического компенсатора и исследуемого элемента.

Предварительные исследования по влиянию оптических свойств ПС плоскопараллельной пластинки оптического компенсатора на погрешность измерения потерь лазерного излучения показали, что среднее значение углового отклонения ф пластин от угла Брюстера ф (при котором погрешность измерения потерь излучения, рассчитанная по формулам Френеля [1, 4], не превышает 0,02 %) составляет не менее 8...9°. При этом $\alpha'_{max} = 3,8...4,5$ %, а точности измерений порядка S_a~0,02 % невозможно достичь даже в установках, в которых используются газоразрядные трубки большой длины (например, для лазеров ЛГ-38, где α'_{max} =3,1 %, значение *L*~1,6 м).

Поскольку диапазон измерения оптических потерь ограничивается коэффициентом усиления активной среды газоразрядной трубки (см. формулу (2)), для расширения области из-

74

мерения потерь и уменьшения относительной погрешности измерения целесообразно использовать вместо классического двухзеркального резонатора трехзеркальный.

Принцип построения схемы установки с трехзеркальным оптическим резонатором (рис. 1) заключается в следующем. В одно из плеч оптического резонатора между зеркалами 1 и 2, с радиусами кривизны (r) 2 и 10 м соответственно, устанавливается газоразрядная трубка 4 лазера ЛГ-52-3, в другое плечо помещаются пластинки оптического компенсатора 5 и исследуемый элемент 6. Коэффициенты отражения зеркал 1, 2 выбираются так, чтобы уровень на-качки был ниже порогового. Зеркало 3 (с $r \Rightarrow \infty$) и зеркала 1, 2 обеспечивает генерацию индуцированного излучения.

При внесении потерь излучения в резонатор лазера, которое осуществляется путем поворота плоскопараллельных пластин компенсатора, изменяется величина выходного сигнала. Однако влияние потерь, вносимых оптическим компенсатором 5 (между зеркалами 2, 3), на изменение выходного сигнала снижено зеркалом 2. Этим достигается расширение области измерения оптических потерь, но чувствительность схемы уменьшается. Однако благодаря тому, что зеркала 2, 3 образуют интерферометр Фабри — Перо и эффективный коэффициент отражения R^* зеркал 2, 3 становится частотно зависимым:

$$|R^*| = \frac{(R_2 - R_3')^2 + 4R_2R_3'\sin^2(2\pi\Delta/\lambda)}{(1 - R_2R_3')^2 + 4R_2R_3'\sin^2(2\pi\Delta/\lambda)},$$
(3)

где $\lambda^{-1} = v$; $R'_3 = R_3(1-\alpha)$; Δ — оптическая разность хода лучей между зеркалами 2, 3, в данной оптической схеме возможно получение модуляции выходного излучения. Для этой цели зеркало 3 устанавливается на пьезокерамический модулятор 7, на который подается переменное напряжение U от генератора.

Наличие модулятора такого рода позволяет также избавиться от периодических срывов генерации, вызванных изменением величины Δ при повороте пластин 5. Кроме того, применение усилителя переменного тока У2-6 с частотной фильтрацией сигнала позволяет частично компенсировать потерю чувствительности в оптической схеме. Модуляционный сигнал после фотодетектора 8 поступает в электронный блок обработки сигналов 9, а затем, в зависимости от метода измерения оптических потерь излучения, — на осциллограф или микровольтметр.

Измерение потерь излучения в данной схеме осуществляется по методу сравнения оптических потерь на калиброванных (эталонных средствах измерения) пластинках оптического компенсатора и исследуемом объекте 6 оптотехники. Поэтому точность определения абсолютных значений потерь в большей степени зависит от инструментальных погрешностей оптического компенсатора и вычислений по формулам Френеля, чем от потенциальной точности измерения внутрирезонаторных потерь излучения, которая характеризуется чувствительностью оптической схемы.

Для определения максимальных потерь излучения в трехзеркальном резонаторе лазера запишем следующие соотношения:

$$\alpha_{\max} = 1 - \sqrt{\frac{1 - R_1 R_2 G}{R_3 (R_1 G - R_2)}};$$

$$\alpha'_{\max} = A(K_v L - \chi L_1) - \alpha'_{\mu}, \ A = \frac{1 + R_2}{1 - R_2}.$$

Здесь параметр *A* характеризует степень расширения области измеряемых значений потерь в установке с трехзеркальным резонатором по сравнению с двухзеркальным резонатором; величина дополнительных потерь α'_{d} аналогична величине α_{d} (формула (2)) в установке с двухзеркальным резонатором.

На рис. 2 приведена зависимость максимальных потерь излучения, при коэффициентах отражения зеркал 1, 3 соответственно 98,8 и 99,8 %, от параметра X:

$$X = R^* - R_2, \quad R^* = 1/R_1G.$$

Параметр X определяет отклонение относительного коэффициента отражения зеркала 2 от значения R^* , при котором выполняется условие порога генерации индуцированного излучения (формула (1)). Коэффициенты отражения зеркал *1—3* контролировались при λ =632,8 нм на спектрофотометре СФ-26 с использованием дополнительной приставки, разработанной в Государственном оптическом институте им. С. В. Вавилова (Санкт-Петербург). Экспериментальные значения α_{max} (кривая 2 на рис. 2) меньше рассчитанных (кривая *1*), которые определялись путем возведения в квадрат левой и правой частей выражения (3). Это можно объяснить наличием дополнительных потерь α'_{II} , которые теоретически не оценивались.

Установка, созданная на базе газоразрядной трубки ЛГ-52-3 при использовании зеркал *I*—3 с коэффициентами отражения R_1 =98,6 %, R_2 =90 % и R_3 =98,9 %, обеспечивает измерение потерь излучения на внутрирезонаторных элементах до значений $\alpha \sim 8$ % с погрешностью не более $S_{\alpha} \leq 0,02$ % при $L_1 \sim 0,6$ м. На данной установке были проведены исследования по влиянию оптических свойств поверхностного слоя элементов, изготовленных из кварцевого стекла КУ1, на потери лазерного излучения, вносимые в оптический резонатор этими элементами.

Измерение величины потерь оптического излучения можно проводить двумя способами, отличающимися выбором начального отсчета: от величины максимальной мощности излучения [3] и от порога генерации индуцированного излучения [4].

На рис. З показана зависимость максимальных потерь излучения на плоскопараллельных пластинках оптического компенсатора (кривая 1) и погрешности (S_{α}) измерения потерь излучения (кривая 2) от угла φ падения светового пучка. Как следует из анализа рис. З, при измерении $\alpha = 0...2$ %, т.е по первой методике, погрешность измерений выше, чем в области значений $\alpha = 2...4$ %, т.е. по второй методике (кривая 2). Кроме того, измерения по второй методике проводятся на линейном участке зависимости потерь излучения α от угла падения светового пучка (кривая 1), что особенно важно при метрологической аттестации потерь, вносимых в оптический резонатор плоскопараллельными пластинками оптического компенсатора.

Для выяснения правомерности использования модели однородного поверхностного слоя, рассмотренной в работе [5], при определении параметров ПС полированного кварцевого стекла КУ1 было проведено сопоставление (в зависимости от времени *t* полирования) экспериментальных результатов измерений величины потерь излучения на длине волны λ =0,6328 мкм (рис. 4, кривая 3) с данными эллипсометрических исследований оптических характеристик ПС — эффективных значений показателя преломления ПС *n** (кривые *l*) и толщины слоя *d** (кривые 2), рассчитанных для следующих распределений показателя преломления ПС:

$$n(z) = n_0 + (n(0) - n_0)F(qz);$$

$$F_1(qz) = \exp(-qz), \ F_2(qz) = (qz)\exp(-qz)$$

здесь n_0 — показатель преломления стекла; n(0) — показатель преломления ПС при z=0, где z — координата оптической оси, направленной вглубь ПС; q = 1/d, где d — характеристическая толщина ПС.

На рис. 4 использованы также следующие обозначения: "+" — модель однородного слоя ПС; "*" — модель оптического профиля ПС $F_2(z)$; "**0**" — модель экспоненциального

профиля ПС $F_1(z)$; " \oplus " — характеристическая толщина d ПС, определяемая для экспоненциального профиля ПС элементов кварцевого стекла методом нарушенного полного внутреннего отражения.

Эффективные параметры n^* и d^* для неоднородных ПС рассчитываются по формулам приведенным в работах [1, 2].

При сопоставлении полученных данных учитывались результаты теоретических исследований, которые показали, что потери оптического излучения, определяемые как разность между истинным коэффициентом пропускания оптического элемента (T) и рассчитанным по формулам Френеля (T_0), при толщине слоя $d^* < \lambda$ пропорциональны не только величине отклонения показателя преломления ПС n^* от объемного значения n_0 , но и квадрату относительной толщины слоя, т.е. $\alpha = T - T_0 \sim (d^*/\lambda)^2$.

Из анализа рис. 4 следует, что изменение толщины ПС, рассчитанной в предположении его оптической неоднородности, лучше соответствует изменению величины потерь излучения, чем при расчете характеристик по модели однородного слоя. Эти данные подтверждают полученный в работах [3, 4] вывод о том, что при полировании кварцевого стекла образуются неоднородные поверхностные слои. Однако для объективной интерпретации физикохимических процессов, приводящих к появлению на поверхности оптической детали модифицированного ПС, необходимо учитывать возможность изменения вида оптического профиля слоя в процессе полирования детали. При этом подробное изучение физико-химических процессов, способствующих формированию неоднородных ПС, указывает на необходимость применения широкого класса ранее не использованных моделей отражающих систем и ужесточения требований к решениям о соответствии той или иной модели ПС объекту исследования. Подробное рассмотрение аспектов экспериментально-теоретического анализа неоднородных ПС является предметом изложения в отдельных публикациях.

Таким образом, по результатам проведенных исследований внутрирезонаторных потерь излучения на элементах лазерной техники доказано, что применение трехзеркального резонатора в лазерной установке позволяет расширить область измеряемых потерь излучения на оптических элементах по сравнению с двухзеркальным резонатором. Методика измерения

внутрирезонаторных потерь на оптических элементах по срыву генерации индуцированного излучения имеет существенные преимущества по сравнению с методикой, в которой измерение потерь излучения осуществляется от величины максимальной выходной мощности лазерного излучения.

СПИСОК ЛИТЕРАТУРЫ

- 1. Землянский В. С., Степанчук А. А., Сычев М. М., Храмцовский И. А. Влияние структуры поверхностного слоя кварцевого стекла на потери излучения в ультрафиолетовой области спектра // Физика и химия стекла. 2008. T. 34, № 3. C. 326—335.
- 2. Новиков А. А., Прокопенко В. Т., Храмцовский И. А Определение потерь излучения на оптических элементах методами эллипсометрии и спектрофотометрии // Изв. вузов. Приборостроение. 2007. Т. 50, № 3. С. 62-68.
- 3. Хирд Т. Измерение лазерных параметров / Пер. с англ.; Под ред Ф. С. Файзуллова. М.: Мир, 1970.
- 4. Троицкий Ю. В. Одночастотная генерация в газовых лазерах. Новосибирск: Наука, 1975. С. 22.
- 5. Пшеницын В. И., Храмцовский И. А. Исследование потерь излучения на оптических элементах в зависимости от физических параметров поверхностного слоя // ОМП. 1983. № 12. С. 5-7.

Сведения об авторах

Полина Сергеевна Беломутская	аспирант. Санкт Патарбургский наниональный исследовательский
	 аспирант, Санкт-петербургский национальный исследовательский
	университет информационных технологий, механики и оптики, ка-
	федра твердотельной оптоэлектроники
Татьяна Михайловна Данилова	 аспирант; Санкт-Петербургский национальный исследовательский
	университет информационных технологий, механики и оптики, ка-
	федра твердотельной оптоэлектроники
Игорь Анатольевич Храмцовский	 канд. техн. наук; Санкт-Петербургский национальный исследователь-
	ский университет информационных технологий, механики и оптики,
	кафедра твердотельной оптоэлектроники
гекомендована кафедрои	Поступила в редакцию

твердотельной оптоэлектроники

22.06.10 г.