В. М. МУСАЛИМОВ, Г. Б. ЗАМОРУЕВ, А. Д. ПЕРЕЧЕСОВА

РАСЧЕТ ФИЗИКО-МЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК ВИНТОВЫХ ЭЛЕМЕНТОВ СПИРАЛЬНО-АНИЗОТРОПНЫХ СТЕРЖНЕЙ

Представлен алгоритм расчета упругих констант винтовых элементов спирально-анизотропных стержней, основанный на методах оптимизации. Расчет производился путем минимизации функционала $f(E_1, G_1)$ на заданных интервалах коэффициента Пуассона. В качестве примера спирально-анизотропного стержня рассматривался кабель.

Ключевые слова: спирально-анизотропный стержень, интегральные упругие постоянные, кабель, методы оптимизации.

Теория спирально-анизотропных стержней. Многослойные пружины, канаты, тросы, нити представляют собой объекты механики деформируемого твердого тела, которые моделируются как спирально-анизотропные стержни (САС) [1]. На рис. 1 приведена типичная конструкция гибкого кабеля. Механические свойства винтовых составляющих этих конструкций определяются их физико-механическими характеристиками E_1, G_1, v_1 , соотнесенными

с геометрией подвижного репера ξ , **η**, **r** (рис. 1). Механические свойства самих конструкций традиционно соотнесены с геометрией стержня — осью *z* и радиусом **r** (рис. 1). При механических испытаниях САС регистрируются линейные **e** и угловые **θ** деформации при различных граничных условиях, определяющих деформированное состояние: свободное и стесненное растяжение, свободное и стесненное кручение. В работах [1, 2] представлены уравнения, связывающие внешние силы и моменты с линейными и угловыми деформациями САС:

$$\frac{P}{\pi R^2 E_1} = A_{11}e + A_{12}\hat{\theta};$$

$$\frac{M}{\pi R^3 E_1} = A_{21}e + A_{22}\hat{\theta}.$$
(1)

Здесь при A_{11} , A_{22} , $A_{12} = A_{21}$ — соответственно модули растяжения, кручения, растяжениякручения; E — модуль упругости САС, P — осевая нагрузка, M — скручивающий момент.

Перепишем уравнения системы (1) в виде:

$$\frac{P}{\pi R^2} = A_{11}E_1 e + A_{12}E_1 \hat{\theta};$$
$$\frac{M}{\pi R^3} = A_{21}E_1 e + A_{22}E_1 \hat{\theta}$$

и введем следующие обозначения:

$$A_{11}E_1 = \alpha_{11}, \quad A_{12}E_1 = \alpha_{12}, \quad A_{21}E_1 = \alpha_{21}, \quad A_{22}E_1 = \alpha_{22}$$

В работах [1, 2] приведены также уравнения, связывающие экспериментально определенные модули с физико-механическими характеристиками винтовых составляющих САС:

$$\alpha_{11} = G_1(9\phi_1 + 18\phi_2) - \frac{1}{2 - \nu_1} 9\phi_2 E_1 + E_1 - 3\phi_1 E_1;$$

$$\alpha_{12} = -G_1(3\phi_1 + 12\phi_2) + \frac{1}{2 - \nu_1} 6\phi_2 E_1 + \phi_1 E_1;$$

$$\alpha_{22} = G_1(\frac{tg^2\alpha_0}{2} + 8\phi_2) - \frac{1}{2 - \nu_1} 4\phi_2 E_1,$$
(2)

где

$$\phi_1 = 1 - 2\operatorname{ctg}^2 \alpha_0 \ln \sec \alpha_0;$$

$$\phi_2 = \frac{1}{2} \sin^2 \alpha_0 - \phi_1.$$

Соотношения (2) являются нелинейной алгебраической системой уравнений относительно интегральных упругих постоянных E_1 , G_1 , v_1 . Целью настоящей статьи является разработка новых подходов к решению таких систем уравнений и определение физикомеханических характеристик E_1 , G_1 , v_1 , что актуально для оценки свойств элементов с микронными радиусами.

Алгоритмы решения слабообусловленных нелинейных систем алгебраических уравнений (оптимизаторы). Ранее для решения системы уравнений использовались вероятностные методы и методы минимизации специально построенного функционала [1, 2]. В настоящей работе для определения интегральных упругих постоянных САС использованы оригинальные оптимизаторы.

Оптимизируемая модель представляется вектором функций

$$\mathbf{y} = f(\mathbf{x}),$$

где $y_i(i = \overline{1, m}), m \ge 1$ — функции ряда независимых факторов влияния, $x_j(j = \overline{1, n}), n \ge 1$.

Все функции у объединяются в функционал

$$F(\mathbf{x}) = \sum_{i=1}^{m} [f_i(\mathbf{x})\mathbf{g}_i]$$

где **g**_{*i*} — вектор весовых коэффициентов для каждой из функций.

Производные от $F(\mathbf{x})$ по **x** формулы

$$\frac{dF(\mathbf{x})}{d\mathbf{x}} = 2\sum_{i=1}^{m} f_i(\mathbf{x}) \mathbf{g}_i \frac{\partial f_i}{\partial x_j},\tag{3}$$

где $\frac{\partial f_i}{\partial x_j}$ — (*m*×*n*)-матрица (матрица Якоби), а $f_i(\mathbf{x})$ — вектор функций (3).

С геометрической точки зрения функционал $F(\mathbf{x})$ является гиперповерхностью многих переменных \mathbf{x} . Эта так называемая поверхность отклика не может существовать в области отрицательных значений области $F(\mathbf{x})$ и в пределе может касаться гиперплоскости \mathbf{x} , в этом случае функционал $F(\mathbf{x})$ имеет точку с нулевым значением и, в свою очередь, $\mathbf{y} = f(\mathbf{x})$ является хорошо обусловленной системой уравнений. Во всех других случаях $F(\mathbf{x})$ имеет экстремум (в данной задаче — минимум) при том или ином численном (вещественном) значении $F(\mathbf{x})$.

В. М. Мусалимов, Г. Б. Заморуев, А. Д. Перечесова Производная $\frac{dF(\mathbf{x})}{d\mathbf{x}}$ геометрически является вектором нормали к поверхности отклика (направление вектора — наружу от поверхности), его длина

 $D_n = \sqrt{\sum_{i=1}^n \left(\frac{\partial F(\mathbf{x})}{\partial \mathbf{x}_i}\right)^2} ,$

(4)

Единичный вектор нормали (направляющие косинусы) определяет направление скорейшего спуска:

$$D_{n1i} = \frac{\frac{\partial F(\mathbf{x})}{\partial x_i}}{D_n}.$$

Если произвести сечение поверхности отклика гиперплоскостью, параллельной х, то получим замкнутую линию при *n*=2, замкнутую поверхность при *n*=3 или замкнутую гиперповерхность при *n*>3. Эти геометрические образы принято называть линиями уровня функционала $F(\mathbf{x})$. Они хорошо отображаются на плоской поверхности при n=2. Вектор нормали (перпендикулярный поверхности отклика) нормален и к линиям уровня в данной точке. Поскольку нормаль направлена в сторону увеличения $F(\mathbf{x})$, направляющий вектор имеет знак "минус".

Общая стратегия поиска оптимального значения (минимума)

1. Задаются начальные значения переменных х.

2. Рассчитываются значения всех исходных функций и функционала $F(\mathbf{x})$.

3. Выбирается направление движения, т.е. задается некоторый вектор **D**(**x**) (лучше единичный) для движения в направлении этого вектора с шагом λ . На каждом шаге рассчитывается значение $F_1(\mathbf{x})$ и сравнивается с предыдущим значением $F_0(\mathbf{x})$:

— если $F_1(\mathbf{x}) < F_0(\mathbf{x})$, движение продолжается в выбранном направлении;

— если $F_1(\mathbf{x}) > F_0(\mathbf{x})$, движение осуществляется в обратном направлении с уменьшенным шагом ($\lambda = -\frac{\lambda}{2}$).

Это условие используется до достижения оптимума на данном шаге с требуемой точностью, таким образом $\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{D} \lambda$.

После уточнения нового значения х шаг считается законченным, направление движения **D** изменяется и повторяются шаги с относительными оптимумами, пока не будет достигнуто удовлетворительное решение задачи.

Относительный оптимум на каждом шаге является точкой касания линии движения по направлению **D** к некоторой линии уровня функционала $F(\mathbf{x})$.

Опишем широко используемые методы поиска оптимума.

Метод перебора координат — простой, в нем не применяются производные $\frac{dF(\mathbf{x})}{d\mathbf{x}}$. Направление D(x) выбирается совпадающим на каждом шаге с одной из осей координат гиперплоскости х. Движение осуществляется с некоторым шагом вдоль произвольной координаты x_i до определения промежуточного оптимума. Затем движение осуществляется вдоль оси x_{i+1} и реализуется второй шаг, до тех пор пока не произойдет перебор всех координат **х**

задачи. Затем следует вернуться к координате x_i и повторить все действия до достижения удовлетворительного результата.

К достоинствам метода относятся простота, отсутствие необходимости в расчете производных; к недостаткам: как правило, большое количество шагов и иногда фактическая невозможность довести решение до конца в случае сложной, сильно искривленной конфигурации линий уровня.

Метод "деформируемого симплекса". Реализация алгоритма начинается с задания *n*+1 точки (стартовый симплекс) для гиперплоскости **x**, что довольно трудно, с этой целью используется некоторая подпрограмма.

Затем для всех n+1 точек определяются значения всех функций и функционалов $F(\mathbf{x})$, далее производится оценка всех n+1 точек по величине $F(\mathbf{x})$, в результате определяются "худшая точка", в которой $F(\mathbf{x})$ имеет наибольшее значение (ей присваивается номер 1), и "лучшая" — где наименьшее (номер n+1).

Далее определяется вектор D(x) (направление движения).

Метод аппроксимации параболой сечения поверхности отклика плоскостью, содержащей нормаль поверхности в рассматриваемой точке и перпендикулярной гиперплоскости параметров **x**. Такое коническое сечение является параболой, и если найти константы параболы, можно одним вычислительным шагом спуститься к ее критическому значению, т.е. с той или иной точностью совершить шаг промежуточной оптимизации.

Достоинством метода является очень высокая скорость расчета, так как отсутствует необходимость "осторожного" передвижения малыми шагами с расчетом функционала и часто производных. Надежно и быстро может быть получено решение с требуемой точностью при умеренном количестве шагов.

Чрезвычайно эффективным методом оптимизации является метод, условно называемый "Гребень", позволяющий максимально придерживаться линии "гребня" поверхности отклика, т.е. линии наиболее глубокой и наиболее пологой части "дна долины" поверхности отклика. Метод использует два типа шагов и основан на геометрических свойствах поверхностей (гиперповерхностей). Производная от $F(\mathbf{x})$ по \mathbf{x} , как уже говорилось, геометрически является нормалью к поверхности (и линии уровня) и имеет определенную величину (4). Если двигаться в некотором направлении и последовательно оценивать производную $\frac{dF(\mathbf{x})}{d\mathbf{x}}$, можно получить множество критических значений на "гребне" (первый тип шагов). Далее при движении по гребню оценивается величина $F(\mathbf{x})$

Достоинством метода является возможность решить при малом числе шагов практически любую задачу с произвольной топологией линий уровня $F(\mathbf{x})$. К недостаткам относится большое число арифметических операций при определении производных и нормали на каждом малом шаге и, следовательно, относительно большое время работы процессора, зависящее от изначальной математической модели задачи $f(\mathbf{x}), ..., f_m(\mathbf{x})$.

Примеры расчета. В работе в качестве модулей растяжения α_{11} , кручения α_{22} , растяжения-кручения α_{12} использованы данные систематических исследований по механике кабеля. В табл. 1 приведены характеристики двух типов кабеля КГ 3×4+1×2. В табл. 2 приведены расчетные данные для кабеля, полученные вероятностным методом [1, 2], численные значения интегральных упругих постоянных, полученные на основе детерминированного подхода [1], а также методом приведенного оригинального функционала.

(второй тип шагов).

					Таоли	ца <u>г</u>		
	N₂ o	х ₁₁ , Па	α ₁₂ ,	Па	α22, Ι	Та		
	1 2	$,42 \cdot 10^{9}$	1,80	10^{6}	5,55.1	0^{5}		
	2 2	$,20.10^{9}$	1,94·	10^{6}	4,23.1	0^{5}		
	·							Таблица 2
Метод	<i>E</i> ₁ , Па			<i>G</i> ₁ , Па			v ₁	
	1	2		1		2	1	2
Вероятностный	$2,38 \cdot 10^9$	$2,16\cdot10^{9}$		$1,66 \cdot 10^9$		$1,50.10^{9}$	0,300	0,304
На основе детерминиро-	$2,42 \cdot 10^9$	2,21.1	10 ⁹	3,53	$\cdot 10^{8}$	$2,37 \cdot 10^{8}$	0,266	0,428

 $7,2913 \cdot 10^{8}$

 $7,3056 \cdot 10^8$

 $6.5977 \cdot 10^8$

 $6,5450 \cdot 10^8$

0,300

0,266

На рис. 2—5 для v₁=0,3 приведены оценки, полученные с помощью алгоритмов описанных методов. В качестве исходных данных использованы параметры, указанные в строке 1 табл. 1, угол наклона к оси анизотропии упруго-эквивалентных спиралей $\alpha_0 = 15^\circ$. Рис. 2 программа "Парабола"; 3 — "Гребень"; 4 — "Координатная"; 5 — "Симплекс" (а — графическое отображение работы программы оптимизации; б — увеличенное графическое отображение работы программы оптимизации). Результат: E_1 =2,4465·10⁹ Па, G_1 =7,2913·10⁸ Па.

 $2,2250.10^{9}$

 $2,2260.10^{9}$

 $2,4465 \cdot 10^9$

 $2,4462 \cdot 10^9$

ванного подхода

Приведенного функцио-

нала для различных v_1

0,304

0,428

Следует отметить, что с помощью оптимизаторов вычисляются все значения физикомеханических характеристик E_1 , G_1 для $0 \le v_1 \le 5$, в то время как для первых двух методов приведены значения наиболее вероятных их значений. На рис. 6 показан характер изменения отношения E_1/G_1 в зависимости от функции v_1 .

Заключение. В настоящей работе развиты новые подходы к оценке физико-механических характеристик винтовых элементов САС. Показано, что предложенные методы оптимизации позволяют эффективно решать слабообусловленные нелинейные системы алгебраических уравнений.

СПИСОК ЛИТЕРАТУРЫ

- 1. Мусалимов В. М. Механика деформируемого кабеля. СПб: СПбГУ ИТМО, 2005. 203 с.
- 2. Мусалимов В. М., Мокряк С. Я., Соханев Б. В., Шиянов В. Д. Определение упругих характеристик гибких кабелей на основе модели спирально-анизотропного тела // Механика композитных материалов. 1984. № 1. С. 136—141.
- 3. Фиакко А., Мак-Кормик Г. Нелинейное программирование. Методы последовательной безусловной минимизации. М.: Мир, 1972. 241 с.

Сведения об авторах

Виктор Михайлович Мусалимов	 д-р техн. наук, профессор; Санкт-Петербургский национальный ис-
	следовательский университет информационных технологий, механики и оптики, кафедра мехатроники; E-mail: musvm@yandex.ru
Георгий Борисович Заморуев	 канд. техн. наук, доцент; Санкт-Петербургский национальный иссле- довательский университет информационных технологий, механики и оптики, кафедра мехатроники; E-mail: georgyz09@gmail.com
Анна Дмитриевна Перечесова	 аспирант; Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, ка- федра мехатроники; E-mail: perechesova@gmail.com
Рекомендована кафедрой мехатроники	Поступила в редакцию 29.02.12 г.