УДК 681.7.062, 681.2.082

В. Е. Малютин, Н. Д. Толстоба, Э. В. Емельянов, Г. В. Якопов

АВТОМАТИЗАЦИЯ ОБРАБОТКИ ДАННЫХ ПРИ КОНТРОЛЕ ОПТИЧЕСКИХ СИСТЕМ МЕТОДОМ ГАРТМАНА

Обсуждается проблема автоматической обработки гартманограмм при контроле оптических систем методом Гартмана. Рассматривается этап сепарации пятен рассеяния на гартманограмме и приводятся алгоритмы, разработанные для поиска пятен.

Ключевые слова: метод Гартмана, гартманограмма, сепарация, поиск.

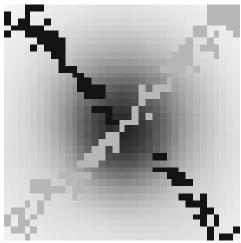
Метод Гартмана, являющийся геометрическим методом контроля, позволяет обнаружить и измерить местные деформации волнового фронта, которые нарушают симметрию пучка лучей.

Известно [1, 2], что процесс обработки результатов контроля оптических систем методом Гартмана делится на следующие этапы:

- 1) определение идеальных положений центров пятен рассеяния, зарегистрированных на матричном приемнике;
 - 2) обработка гартманограммы:
 - 2.1 определение масштаба и ориентации гартманограммы;
 - 2.2 сепарация пятен;
 - 2.3 определение центров пятен;
 - 2.4 идентификация пятен;
 - 3) определение величин отклонений волнового фронта.
- В настоящей статье рассматривается этап 2.2 сепарация пятен на гартманограмме. Для устойчивой автоматической работы метода Гартмана с различными снимками необходимо распознавать любые картины с заранее неизвестным количеством пятен рассеяния. Для этого, в свою очередь, необходимо разделение гартманограммы на отдельные пятна в целях поиска информации о центрах пятен иными способами [3—5].

Рассмотрим методы нахождения пятен на гартманограмме.

Метод поиска пятен "по диагонали". Интенсивность картины отдельного пятна от края к центру увеличивается, поэтому можно вывести следующее предположение: если интенсивность пикселов по диагонали отличается от интенсивности фона или изменяется при анализе некоторого ряда пикселов, то можно сделать вывод о том, что это — пятно рассеяния. В противном случае, если интенсивность пикселов меняется, но на небольшом участке гартманограммы, то этот участок необходимо считать цифровым шумом и его, соответственно, не следует определять как пятно рассеяния.


Алгоритм (рис. 1).

- 1. Диагональ направлена в четвертый квадрант (слева направо сверху вниз).
- **2.** Изначально рассматривается пиксел (0,0) и подвергается проверке пиксел (1,1) на диагонали:
- если пиксел отличается от фона по интенсивности, то устанавливается маркер, и по диагонали проверяется следующий пиксел;
- если пиксел не отличается от фона по интенсивности, значит, перепад интенсивности завершен, следующие пикселы принадлежат фону, и маркировка диагонали пятна прекращается; далее начало проверки перемещается в пиксел (0,1).

Пикселы, помеченные на предыдущих шагах, пропускаются.

- **3.** В результате по окончании анализа картины, т.е. по достижении последнего пиксела, формируется набор пятен рассеяния, помеченных штрихами слева направо по диагонали.
- **4.** Далее алгоритм выполняется сначала с изменением направления диагонали просмотра на 90° (направление диагонали третий квадрант). Снова маркируются пикселы, лежащие на диагонали.
- **5.** Координаты границ пятен сохраняются и могут использоваться на следующем этапе обработки данных.

В результате выполнения алгоритма формируется картина, вид которой показан на рис. 1.

Puc. 1

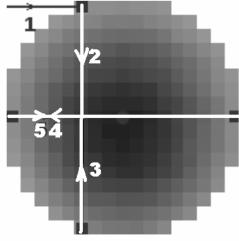
Работа алгоритма может быть оптимизирована пользователем, если порог перепада интенсивности и шаги по диагонали будут заранее им определены.

К достоинствам данного алгоритма следует отнести простоту реализации и универсальность, а к недостаткам — большие затраты времени на обработку данных (вследствие двух проходов по изображению) и недостаточно точное определение границ пятна.

Метод поиска пятен "по прямой". В основе данного метода поиска пятен рассеяния лежит предположение о том, что пятно рассеяния имеет форму эллипса. При последовательном анализе изображения слева направо верхний пиксел такого пятна будет находиться приблизительно над участком, интенсивность которого близка к максимальной яркости пятна рассеяния.

Для корректной работы алгоритма сначала необходимо определить интенсивность фона. Эту задачу можно решить несколькими способами:

- принять пиксел (0,0) за фон, что, однако, может вызвать случайные ошибки;
- предоставить выбор фона пользователю;
- произвести сканирование всего изображения и интенсивность подавляющего большинства пикселов принять за фон, что, однако, приведет к дополнительным затратам машинного времени.

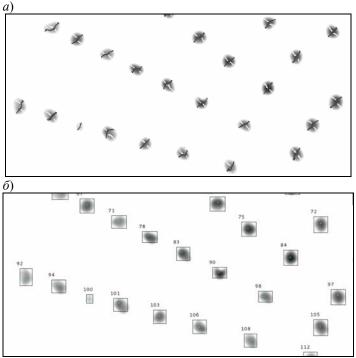

Алгоритм (рис. 2).

- 1. Рассматривается пиксел (0,0).
- 2. Определяется интенсивность фона любым из указанных способов.
- **3.** Проверяется близость значения интенсивности текущего пиксела (0,0) к интенсивности фона.
 - 4. Если значения интенсивностей близки (шаг 3), то проверяется следующий пиксел (0,1).
- **5.** Если пиксел отличается от фона по интенсивности, то записываются его координаты, и далее изменяется направление обработки снимка. При анализе изображения вниз по прямой пикселы (1,1), (2,1) проверяется их интенсивность, пока не достигается пиксел с фоновым значением интенсивности. В процессе анализа определяются координаты самого

яркого пиксела, запоминается самый нижний, отличающийся по интенсивности от фона пиксел и осуществляется возврат к самому яркому пикселу.

6. Осуществляется последовательный анализ изображения в левом направлении до достижения фонового значения интенсивности пиксела. Запоминаются координаты этого пиксела и при последовательном анализе в обратном направлении так же определяется положение крайнего правого фонового пиксела.

Таким образом становятся известны границы пятна рассеяния (рис. 2).


Puc. 2

На рис. 2 стрелками показано направление последовательного анализа при реализации алгоритма, цифрами обозначен порядок анализа.

В результате выполнения алгоритма формируются области, которые подлежат обработке для уточнения центров пятен и определения деформации волнового фронта.

Достоинства данного алгоритма — относительно высокая скорость поиска всех областей и примерных положений центров пятен, универсальность и простота реализации.

Анализ результатов. На рис. 3 представлены результаты обработки фрагментов гартманограммы с использованием метода поиска "по диагонали" (a) и "по прямой" (δ).

Puc. 3

Рассмотренные алгоритмы с высокой степенью достоверности определяют все пятна гартманограммы. Однако при обработке одинаковых снимков метод "по диагонали" в несколько раз уступает методу "по прямой" по скорости работы.

Таким образом, при анализе гартманограмм для сепарации пятен рекомендуется использовать второй алгоритм — "по прямой". Данный метод позволяет в автоматическом режиме определять местоположение пятен рассеяния, обеспечивая возможность автоматического анализа гартманограмм и получения достоверных сведений о деформациях главного зеркала большого телескопа альт-азимутального (БТА).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Зверев В. А., Родионов С. А., Сокольский М. Н., Усоскин В. В.* Технологический контроль главного зеркала БТА методом Гартмана // ОМП. 1977. № 3. С. 3—5.
- 2. Витриченко Э. А. Методы исследования астрономической оптики. М.: Наука, 1980. 152 с.
- 3. Tolstoba N. Analysis of Hartmann testing techniques for large-sized optics // Proc. of SPIE. 2001. Vol. 4451. P. 406—413.
- 4. *Стороженко А. И., Толстоба Н. Д.* Измерение координат энергетических пятен рассеяния на матричном приемнике // Тр. Междунар. оптич. конгресса "Оптика—XXI век". СПб: СПбГУ ИТМО, 2002.
- 5. *Tolstoba N. D.* Determination of aberrations by processing lenslet array image located on the CCD receiver // Proc. of SPIE, 2001, Vol. 4473.

01 SPIE. 2001. VOI. 44/3.	
Владимир Евгеньевич Малютин	Сведения об авторах — магистр; Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, кафедра
Надежда Дмитриевна Толстоба	прикладной и компьютерной оптики; E-mail: scordion@mail.ru — канд. техн. наук, доцент; Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, кафедра прикладной и компьютерной оптики;
Эдуард Владимирович Емельянов	E-mail: nadinet@mail.ru — канд. техн. наук; Специальная астрофизическая обсерватория РАН, лаборатория обеспечения наблюдений, п. Нижний Архыз, Карачаево-Черкесская Республика; науч. сотрудник; E-mail: eddy@sao.ru
Григорий Владимирович Якопов	 канд. техн. наук; Специальная астрофизическая обсерватория РАН, служба эксплуатации комплекса БТА, п. Нижний Архыз, Карачаево-Черкесская Республика; ст. науч. сотрудник; E-mail: yakopov@sao.ru
Вокомондована кафодрой	Поступила в ролаучии

Поступила в редакцию 07.02.13 г.