ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

4
Issue
vol 67 / April, 2024
Article

DOI 10.17586/0021-3454-2019-62-5-477-483

UDC 621.396

ESTIMATION OF THE MEASUREMENT ERROR OF TERRAIN RELIEF WITH BISTATIC SPACE-BASED RADAR SYSTEM

O. V. Goryachkin
Povolzhskiy State University of Telecommunications and Informatics, Department of Theoretical Foundations of Radio Engineering and Communication; Head of the Department ;


I. V. Maslov
Povolzhskiy State University of Telecommunica-tions and Informatics, Department of Theoretical Foundations of Radio Engineering and Communication;


Read the full article 

Abstract. Results of theoretical study of the influence of the ionosphere on the accuracy of the terrain ele-vation measurements using a bistatic interferometer are presented. The interferometer under consideration is based on space radar with synthesis of the P-band aperture and ground receiving point. The necessary statistical characteristics of random signal fluctuations are determined. A method for calculating the error in the height estimates depending on the interferometer geometry, the effect of ionosphere parameters, additive noise, and spatial decorrelation of radar images is described. According to the presented numerical dependences, it is possible to estimate the optimal range of values of the interferometric base and the error in determining the height for both point and extended targets. In the case of reflection from extended targets, the error due to the spatial decorrelation of the reflected signals in a single resolution element is considered additionally.
Keywords: synthetic aperture radar (SAR), bistatic radar, two-pass SAR interferometer, error of elevation measurement, effect of ionosphere

References:

1. Ramongassie S., Valle P., Orlando G., Arpesi P., Helière F., Arcioni M. EUSAR, 2014, рр. 1156–1159. 2. Akhmetov R., Goriachkin O., Ivachenko E., Kovalenko A., Riemann V., Stratilatov N., Tkachenko S. URSI-F, 7th Training Workshops Garmisch-Partenkirchen, Germany, March, 2011, рр. 78–80. 3. Borisenkov A., Goriachkin O., Dmitrenok V., Dolgopolov V., Zhengurov B., Juravlev A., Kurkova I., Khohlov S. Procedia Engineering, 2015, vol. 104, рр. 2–8. 4. Zhu X., Zhang Q., Zhang Y., Dong Z. Radar Conf., 2015. 5. Chen A., Zebker H. IEEE Transact. on Geoscience and Remote Sensing, 2014, vol. 52, рр. 50–60. 6. Zebker H., Villasenor J. IEEE Transact. on Geoscience and Remote Sensing, 1992, nо. 30 (5), рp. 950–959. 7. Klovskiy D.D. Peredacha diskretnykh soobshcheniy po radiokanalam (The Transfer of Discrete Messages over the Radio), Moscow, 1982, 304 р. (in Russ.) 8. Goriachkin O.V. Metody slepoy obrabotki signalov i ikh prilozheniya v sistemakh radiotekhniki i svyazi (Blind Signal Processing Methods and Their Applications in Radio Engineering and communication Systems), Moscow, 2003, 230 р. (in Russ.) 9. Goriachkin O.V., Klovsky D.D. Proc. IEEE 1999 Intern. Geoscience and Remote Sensing Symp., Hamburg, Germany, July 1999, vol. 2, рр. 1271–1273. 10. Goriachkin O.V. IEEE Geoscience and Remote Sensing Letters, 2004, nо. 4(1), рp. 251–254. 11. Kretov N.V., Ryzhkina T.E., Fedorova L.V. Jоurnal of Communications Technology and Electronics, 1992, nо. 1, рp. 90–95. (in Russ.) 12. Ishimaru A., Kuga Y., Liu J., Kim Y., Freeman T. Radio Science, 1999, nо. 1(34), рp. 257–268. 13. Goriachkin O.V. Physics of Wave Processes and Radio Systems, 2003, nо. 3(6), рp. 33–38. (in Russ.) 14. Neronskiy L.B., Mikhaylov V.F., Bragin I.V. Mikrovolnovaya appara-tura distantsionnogo zondirovaniya Zemli i atmosfery. Radiolokatory s sintezirovannoy aperturoy antenny (Microwave Equipment for Remote Sensing of the Earth and the Atmosphere. Antenna Synthetic Aperture Radars), St. Petersburg, 1999, Pt. 2, 220 р. (in Russ.) 15. Kirilin A.N., Akhmetov R.N., Shakhmatov Ye.V., Tkachenko S.I., Baklanov A.I., Salmin V.V., Semkin N.D., Tkachenko I.S., Goryachkin O.V. Opytno-tekhnologicheskiy malyy kosmicheskiy apparat „AIST-2D“ (Experimental technological small spacecraft AIST-2D), Samara, 324 р. (in Russ.)