ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

4
Issue
vol 67 / April, 2024
Article

DOI 10.17586/0021-3454-2021-64-6-469-476

UDC 681.7.068.4

TECHNOLOGICAL METHODS FOR REDUCING THE GROWTH FACTORS OF SURFACE DEFECTS IN POLYMER PLANAR OPTICAL WAVEGUIDES

T. A. Radzievskaya
JSC Avangard, Microsystems Engineering Center; Process Engineer; St. Petersburg Electrotechnical University, Department of Photonics;


I. A. Lamkin
PhD, Associate Professor; St. Petersburg Electrotechnical University, Department of Photonics;


S. A. Tarasov
Dr. Sci., Associate Professor; St. Petersburg Electrotechnical University, Department of Science; Director; Department of Photonics; Head of the Department;


N. N. Ivanov
Dr. Sci.; The Bonch-Bruevich St. Petersburg State University of Telecommunications, Institute of Magistracy; Deputy Director for Research;


Read the full article 

Abstract. Several technological approaches to reduction of surface defects in polymer planar optical waveguides are presented. Experimental studies are shown to reveal and eliminate the factors contributing to an increase in the number of surface defects when using soft lithography technology. The efficiency of using a specially designed light filter is demonstrated.
Keywords: polymer planar optical waveguides, soft lithography, master stamp, PDMS, SU-8, negative tilt of the photoresist walls, scattering losses

References:
  1. Akhmanov A.S. LIGHTWAVE, 2008, no. 3, pp. 46–53. (in Russ.)
  2. Miller S.E. Bell System Technical Journal, 1969, no. 7(48), pp. 2059–2069, DOI: 10.1002/j.1538-7305.1969.tb01165.x.
  3. Cai D. Optical and mechanical aspects on polysiloxane based electrical-optical-circuits-board: Doct. thesis. Dortmund, 2008. 129 р., DOI: 10.17877/DE290R-8242.
  4. Cai D. Sensors and Actuators B: Chemical, 2011, no. 1(160), pp. 777–783, DOI: 10.1016/j.snb.2011.08.062.
  5. Prajzler V., Neruda M., Nekvindova P. et al. Radioengineering, 2017, no. 1(26), pp. 10–15, DOI: 10.13164/re.2017.0010.
  6. Immonen M. IEEE Transactions on Electronics Packaging Manufacturing, 2005, no. 4(28), pp. 304–311, DOI: 10.1109/TEPM.2005.856538.
  7. Cai Z., Qiu W., Shao G. et al. Sensors and Actuators A: Physical, 2013, vol. 204, рp. 44–47, DOI: 10.1016/j.sna.2013.09.019.
  8. Sergeeva E. Fabrication of polymer-based optofluidic microsystems for optical fluid analysis on printed circuit boards: Thes. Dr.-Ing., Universität Rostock, Rostock, 2019, 143 p.
  9. Zhou W. Nanoimprint Lithography: An Enabling Process for Nanofabrication, Berlin, Heidelberg, Springer-Verlag, 2013, 269 p., DOI: 10.1007/978-3-642-34428-2.
  10. Radzievskaya T.A., Ivanov N.N., Tarasov S.A. Proceedings of Telecommunication Universities, 2021, no. 1(7), pp. 45‒59, DOI:10.31854/1813-324X-2021-7-1-45-59.
  11. Madou M.J. Fundamentals of Microfabrication and Nanotechnology, 3rd ed. USA, Irvine, CRC Press, 2011, 1992 p., DOI: 10.1201/9781315274164.
  12. Mitra S.K. Microfluidics and nanofluidics handbook: Fabrication, implementation, and applications, USA, Irvine, CRC Press, 2011, 624 p., DOI: 10.1201/b11188.
  13. Ma H., Jen A.K.‐Y., Dalton L.R. Advanced Materials, 2002, no. 19(14), pp. 1339–1365, DOI: 10.1002/1521-4095(20021002)14:19<1339::AID-ADMA1339>3.0.CO;2-O.
  14. Osovitskii A.N. Journal of Communications Technology and Electronics, 2011, no. 1(56), pp. 35–38.
  15. Danilenko S.S., Osovitskii A.N. Vestnik RUDN. Seriya Matematika. Informatika. Fizika, 2013, no. 1, pp. 141–147. (in Russ.)