ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

2
Issue
vol 67 / February, 2024
Article

DOI 10.17586/0021-3454-2021-64-7-559-566

UDC 629.053

ALGORITHM FOR INCREASING THE SPATIAL DENSITY OF A LIDAR POINT CLOUD FOR SOLVING PROBLEMS OF AUTONOMOUS DRIVING

A. A. Starobyhovskaya
ITMO University, Institute of Design & Urban Studies;


O. Y. Lashmanov
Arrival Rus Ltd ; Senior Algorithm Developer


V. V. Korotaev
ITMO University, Saint-Petersburg, 197101, Russian Federation; Full Professor


Read the full article 

Abstract. Several algorithms are proposed to solve the problem of increasing the density of points of lidar clouds, including the algorithms based on neural networks. High density lidar clouds can improve the accuracy of scene recognition and localization algorithms. The algorithms quality is assessed by the following metrics: the number of false points, the average error, the root-mean-square error. In contrast to existing ones, the proposed algorithms are aimed at determining not only additional points positions, but also their reflectivity coefficients. Presented results of experiments demonstrate that the neural network algorithm without the use of normalization and sigmoidal weighting of the loss function has the smallest error. The least number of false points is provided by the neural network algorithm with an added normalization.
Keywords: increasing point cloud density, lidar, neural networks, normal, Unet, unmanned vehicle

References:
  1. Caesar H., Bankiti V., Lang A.H., Vora S., Liong V.E., Xu Q., Krishnan A., Pan Y., Baldan G., Beijbom O. Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR), 2020, vol. 1, pp. 11621–11631.
  2. Sun P., Kretzschmar H., Dotiwalla X., Chouard A., Patnaik V., Tsui P., Guo J., Zhou Y., Chai Y., Caine B., Vasudevan V. IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR), 2020, vol. 1, pp. 2446–2454.
  3. Yang B., Luo W., Urtasun R. IEEE Computer Society, 2018, vol. 1, Jun, pp. 7652–7660.
  4. Liang M. et al. Proceedings of the European Conference on Computer Vision (ECCV), 2018, vol. 1, pp. 641–656.
  5. Rozenberszki D., Majdik A.L. IEEE Intern. Conference on Robotics and Automation (ICRA), 2020, pp. 4379–4385.
  6. Chen S., Liu B., Feng C., Vallespi-Gonzalez C., Wellington C. IEEE Signal Processing Magazine, 2021, no. 1(38), pp. 68–86.
  7. Bai X., Luo Z., Zhou L., Fu H., Quan L., Tai Cl. IEEE Computer Society, 2020, vol. 1, Jun, pp. 6358–6366.
  8. Ouster Inc. Mid-Range High-Resolution Imaging Lidar, 2020, https://ouster.com/products/os1-lidar-sensor/.
  9. Alsadik B. Remote Sensing, 2020, no. 510(12), Feb.
  10. Geiger A.L., Stiller P., Urtasun C. Intern. Journal of Robotics Research, 2013, vol. 32, Sep., pp. 1231–1237.
  11. Carballo A., Lambert J., Cano A.M., Wong D., Narksri P., Kitsukawa Y., Takeuchi E., Kato S., Takeda K. IEEE Intelligent Vehicles Symposium, 2020, vol. 4, pp. 1094–1101.
  12. Casas S., Gulino C., Liao R., Urtasun R.. 2020 IEEE Intern. Conference on Robotics and Automation, Paris, France, 2020, pp. 9491–9497.
  13. He K., Zhang X., Ren S. and Sun J. IEEE Computer Society, 2016, vol. 1, Jun, pp. 770–778.
  14.  Wang X., Yu K., Wu S., Gu J., Liu Y., Dong C., Qiao Y., Change Loy C. Proceedings of the European Conference on Computer Vision (ECCV) Workshops, 2018, pp. 63–79.
  15. Yu L., Li X., Fu C.-W., Cohen-Or D., Heng Ph.-A. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2018, vol. 1, Mar., pp. 2790–2799.
  16. Ronneberger O., Fischer P., Brox T. U-net: Convolutional networks for biomedical image segmentation, Cham, Springer, 2015, vol. 9351, Oct., pp. 234–241.
  17. Hu X., Naiel M.A., Wong A., Lamm M. and Fieguth P. Computer Society, 2019, vol. 1, Jun., pp. 505–507.