ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

4
Issue
vol 67 / April, 2024
Article

DOI 10.17586/0021-3454-2022-65-10-725-734

UDC 004.358

DEVELOPMENT OF A DIGITAL TWIN MODEL FOR A HYBRID PRODUCTION LINE FOR LED LIGHTING DEVICES ASSEMBLY

V. P. Kuzmenko
St. Petersburg State University of Aerospace Instrumentation, Department of Electromechanics and Robotics;


S. V. Soleniy
St. Petersburg State University of Aerospace Instrumentation, Department of Electro-Mechanics and Robotics; Associate Professor, Head of the Department


Read the full article 

Abstract. An example of the choice of hardware and software parts of equipment for creating a digital twin of a hybrid automated assembly line is presented. The necessary functions of the digital twin of the hybrid assembly line of LED lighting devices are described, the functions of the models of the software components of the system managers (Resource Manager, Sensor Manager, Environment Layout Manager) are analyzed. The UML representation of the digital twin data model is given.
Keywords: hybrid production line, assembly of LED lighting devices, digital twin production line

References:
  1. Mittal S., Khan M.A., Romero D., Wuest T. Proc. of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2019, no. 5(233), pp. 1342–1361.
  2. Tsarev M.V., Andreev Yu.S. Journal of Instrument Engineering, 2021, no. 7(64), pp. 517–531, DOI: 10.17586/0021-3454-2021-64-7-517-531. (in Russ.)
  3. Kruger J., Wang L., Werl A., Bauernhansl T., Carpanzano E., Makris S., Fleischer J., Reinhart G., Franke J., Pellegrinelli S. CIRP Annals of Manufacturing Technology, 2018, vol. 66, pp. 707–730.
  4. Borovkov A.I., Ryabov Yu.A. Tsifrovaya transformatsiya ekonomiki i promyshlennosti (Digital Transformation of the Economy and Industry), Proceedings of a scientific and practical conference with foreign participation, June 20—22, 2019, St. Petersburg, 2019, рр. 234–245, DOI:10.18720/IEP/2019.3/25. (in Russ.)
  5. https://digital.gov.ru/ru/documents/6662. (in Russ.)
  6. https://www.gartner.com/en/newsroom/press-releases/2018-10-15-gartner-identifies-the-top-10-strategic-technology-trends-for-2019.
  7. http://www.ros.org. (in Russ.)
  8. Kousi N., Michalos G., Aivaliots S., Makris S. 51st CIRP Conference on Manufacturing Systems (CMS 2018), Stockholm , Sweden, May 16–18, 2018.
  9. Sihan H., Guoxin W., Yan Y., Xiongbing F. Journal of Manufacturing Systems, 2020, vol. 54, pp. 361–371, D0I:10.1016/j.jmsy.2020.01.009.
  10. Afanasiev M.Ya., Fedosov Yu.V., Krylova A.A., Shorokhov S.A. Journal of Instrument Engineering, 2020, no. 9(63), pp. 830–839, DOI: 10.17586/0021-3454-2020-63-9-830-839. (in Russ.)
  11. Qi Q., Tao F., Hu T., Anwer N., Liu A., Wei Y., Wang L., Nee A. Journal of Manufacturing Systems, 2021, vol. 58, pt. B, January, рр. 3–21, DОI:10.1016/j.jmsy.2019.10.001.
  12. Schluse M., Priggemeyer M., Atorf L., Rossmann J. IEEE Trans. Ind. Information, 2018, no. 4(14), pp. 1722–1731, DOI:10.1109/TII.2018.2804917.
  13. Dasbach T., Zancul E., Schützer K., Anderl R. PLM 2019. IFIP Advances in Information and Communication Technology, Cham, Springer, 2019, vol. 565, pp. 283-292, D0I:10.1007/978-3-030-42250-9_27.
  14. Zakharov V.V., Ushakov V.A. Journal of Instrument Engineering, 2019, no. 6(62), pp. 585–588, DOI: 10.17586/0021-3454-2019-62-6-585-588. (in Russ.)
  15. Mrugalska B., Zasada B., Wyrwicka M.K. Advances in manufacturing, Production Management and Process Control, 2019, vol. 793, рр. 540–548.