ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

4
Issue
vol 67 / April, 2024
Article

DOI 10.17586/0021-3454-2022-65-10-735-746

UDC 620. 179.17

EXPERIMENTAL DETERMINATION OF THE SIGNIFICANCE OF STATISTICAL EVALUATION OF PARAMETERS CHARACTERIZING SECONDARY DIAGNOSTIC INDICATORS OF ACOUSTIC EMISSION

Y. Altay
ITMO University, Saint Petersburg, 197101, Russian Federation; PhD Student, Engineer


A. V. Fedorov
ITMO University, Saint Petersburg, 197101, Russian Federation; Professor


K. A. Stepanova
ITMO University, Saint Petersburg, 197101, Russian Federation; Assistant


D. O. Kuzivanov
ITMO University, Saint Petersburg, 197101, Russian Federation; Engineer


Read the full article 

Abstract. Statistical evaluation of secondary diagnostic indicators of acoustic emission (AE) is an integral part of signal processing after applying filtering methods. AE parameters of acoustic noise obtained while monitoring AE from two tools in the milling process are analyzed using the method of polynomial digital bidirectional filtering. The efficiency of this filtering method is examined by determining the difference between the original and filtered AE signals. Fragments of the information and noise components of the signal are separated to allow for experimental determination of the signal/interference indicator. It is shown that the use of the polynomial digital method of bidirectional filtering improves the quality of signal processing and makes it possible to detect statistically significant correlations between the parameters of AE signals when testing a defective and defect-free instruments. A linear regression model is applied to describe the ratio of secondary diagnostic indicators of a defective instrument to indicators of a defect-free tool during AE monitoring.
Keywords: acoustic emission, signal processing, noise filtering, acoustic emission parameters, diagnostic indicators, statistical processing, signal-to-noise ratio

References:
  1. Bekher S.A., Bobrov A.L. Osnovy nerazrushayushchego kontrolya metodom akusticheskoy emissii (Fundamentals of Non-Destructive Testing by the Method of Acoustic Emission), Novosibirsk, 2013, 145 р.
  2. Bekher S.A. Metody kontrolya dinamicheski nagruzhennykh elementov podvizhnogo sostava pri remonte i v ekspluatatsii na osnove kompleksnogo ispol'zovaniya tenzometrii i akusticheskoy emissii (Methods for Monitoring Dynamically Loaded Rolling Stock Elements during Repair and Operation Based on the Integrated Use of Strain Gauges and Acoustic Emission), Extended abstract of Doctor’s thesis, Tomsk, 2017, 36 р. (in Russ.)
  3. Barat V., Borodin С., Kuzmin A. Journal of Acoustic Emission, 2010, vol. 28, рр. 109–119.
  4. He Y. Mechanical Systems and Signal Processing, 2021, vol. 148, рр. 107146.
  5. Altay Y., Fedorov A.V., Stepanova K.A. Sbornik trudov 25-y Mezhdunarodnoy konferentsii po myagkim vychisleniyam i izmereniyam (Proceedings of the 25th International Conference on Soft Computing and Measurement), St. Petersburg, 2022, рр. 24–27.
  6. Filonenko S.F. Eastern European Journal of Advanced Technologies, 2015, no. 9(6), pp. 47–50. (in Russ.)
  7. Prokhorov S.A., Khaimovich A.I., Stolbova A.A., Kondratiev A.I. Information technology and nanotechnology, 2017, no. 2(5), pp. 1303–1309. (in Russ.)
  8. Altay Y.A., Fedorov A.V., Stepanova K.A. Proc. of the 2022 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, St. Petersburg, 2022, рр. 1320–1326.
  9. Altay Y., Fedorov A.V., Stepanova K.A. 24-ya Mezhdunarodnaya konferentsiya „Tsifrovaya obrabotka signalov i yeye primeneniye“ DSPA–2022 (24th International Conference on Digital Signal Processing and its Applications. DSPA-2022), Collection of reports, Moscow, 2022, рр. 78–82. (in Russ.)
  10. Altay Y., Fedorov A.V., Stepanova K.A., Kuzivanov D.O. Fizicheskiye metody nerazrushayushchego kontrolya (Physical Methods of Non-Destructive Testing), Collection of abstracts of the XXXIII Ural conference, Yekaterinburg, 2022. (in Russ.)
  11. Levin B.R. Teoreticheskiye osnovy statisticheskoy radiotekhniki (Theoretical Foundations of Statistical Radio Engineering), Moscow, 1968, 504 р. (in Russ.)
  12. Gomez M.P. Procedia Materials Science, 2012, no. 2(1), pp. 321–328.
  13. Salin V.N., Churilova E.Yu. Praktikum po kursu „Statistika“ (Workshop on the Course „Statistics“), Moscow, 2002, 188 р. (in Russ.)
  14. Rastegaev I.A., Merson D.L., Rastegaeva I.I. Аktual'nyye problemy metoda akusticheskoy emissii (Actual Problems of the Acoustic Emission Method), Collection of materials of the All-Russian Conference, Tolyatti, 2018, рр. 103–104. (in Russ.)
  15. Popkov A.A. Metodicheskoye i algoritmicheskoye obespecheniye akustiko-emissionnogo kontrolya pri udarnom nagruzhenii (Methodical and Algorithmic Support of Acoustic Emission Control under Shock Loading), Extended abstract of candidate’s thesis, Novosibirsk, 2021, 24 р. (in Russ.)
  16. Altay Y., Fedorov A.V., Stepanova K.A. Control. Diagnostics, 2022, no. 6(25), pp. 36–45. (in Russ.)
  17. Zakharov L.А., Martyushev D.А., Ponomareva I.N. Journal of Mining Institute, 2022, vol. 253, рр. 23–32.
  18. Elforjani M., Shanbr S. IEEE Transactions on industrial electronics, 2018, no. 7(65), pp. 5864–5871.