ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

4
Issue
vol 67 / April, 2024
Article

DOI 10.17586/0021-3454-2022-65-10-747-762

UDC 537.312.52:544.537

THE EFFECT OF FUSED QUARTZ STRUCTURING BY LASER-INDUCED MICROPLASMA AND PURIFICATION ON MULTISECTOR BINARY PHASE PLATES OPERATION

G. K. Kostyuk
ITMO University, Department of Laser Technologies and Applied Ecology, St. Petersburg; Senior Lecturer


D. S. Stepanyuk
ITMO University, Faculty of Nanoelectronics; Laboratory Assistant


V. A. Shkuratova
ITMO University, Faculty of Nanoelectronics;


A. A. Petrov
ITMO University, 197101, Saint-Petersburg, Russian Federation; Associate professor


N. A. Nesterov
ITMO University, Faculty of Nanoelectronics;


Read the full article 

Abstract. For each stage of phase optical elements (POEs) production, including the POEs recording with laser-induced microplasma and post-processing, the influence on the microgeometry parameters of the microrelief formed on the POE surface, which ensures their high quality and energy conversion efficiency, is studied. The conditions for the each of the POE manufacturing stages implementation providing repeatability of the stage results in terms of the formed microgeometry relief depth and characteristics of its surface roughness, are given. All the studies are carried out using multi-sector binary phase plates chosen for their relative simplicity of design compared to other POEs of a similar purpose. It is shown that the best results on the PHE surface roughness with the complete elimination of graphite particles polluting the surface of multisectoral binary phase plates and possible micro/nanodefects and stresses arising during recording by laser-induced microplasma technology, are achieved by post-processing in the form of annealing at a temperature of 900 ° C for 1 h.
Keywords: laser-induced microplasma, cluster ablation, post-processing, phase optical elements, multi-sector binary phase plates, fused quartz

References:
  1. Hnatovsky C. et al. Opt. Lett., 2012, no. 2(37), pp. 226–228.
  2. Syubaev S. et al. Opt. Express., 2017, no. 9(25), pp. 10214–10223.
  3. Chen M. et al. Opt. Lett., 2013, no. 22(38), pp. 4919–4922.
  4. Ng J., Lin Z., Chan C.T. Phys. Rev. Lett., 2010, no. 10(104), pp. 103601.
  5. Wang J. et al. Nat. Photonics., 2012, no. 7(6), pp. 488–496.
  6. Nagali E. et al. Phys. Rev. Lett., 2009, no. 1(103), pp. 013601.
  7. Massari M. et al. Appl. Opt., 2015, no. 13(54), pp. 4077–4083.
  8. Cheong W. C. et al. Appl. Phys. Lett., 2004, no. 23(85), pp. 5784–5786.
  9. Ruffato G. et al. Opt. Eng., 2015, no. 11(54), pp. 111307.
  10. Ruffato G. et al. Opt. Lett., 2014, no. 17(39), pp. 5094–5097.
  11. Shi L. et al. Opt. Express., 2015, no. 7(23), pp. 8620–8629.
  12. Sueda K. et al. Opt. Express., 2004, no. 15(12), pp. 3548–3553.
  13. Jun C. et al. Chin. Phys. Lett., 2009, no. 1(26), pp. 014202.
  14. Khonina S. N. et al. Sci. Rep., 2018, no. 1(8), pp. 1–11.
  15. Brasselet E. et al. Appl. Phys. Lett., 2010, no. 21(97), pp. 211108.
  16. Zukauskas A. et al. Appl. Phys. Lett., 2013, no. 18(103), pp. 181122.
  17. Veiko V.P. et al. Quantum Electron., 2017, no. 9(47), pp. 842–848.
  18. Zhang J., Sugioka K., Midorikawa K. Appl. Phys. A, 1998, no. 4(67), pp. 499–501.
  19. Cheng J.-Y. et al. J. Micromech. Microeng., 2005, no. 6(15), pp. 1147–1156.
  20. Harm W. et al. Opt. Express., 2015, no. 1(23), pp. 413–421.
  21. Ovsianikov A. et al. ACS Nano, 2008, no. 11(2), pp. 2257–2262.
  22. Malinauskas M. et al. Opt. Express., 2010, no. 10(18), pp. 10209–10221.
  23. Zhou L. et al. High Power Laser Sci., 2018, no. e6(6), DOI:10.1017/hpl.2018.1
  24. Kostyuk G. K. et al. Opt. Lasers Eng., 2015, vol. 68, рр. 16–24.
  25. Kostyuk G.K. et al. Opt. Lasers Eng., 2017, vol. 92, рр. 63–69.
  26. Shkuratova V. et al. Appl. Phys. B, 2020, no. 4(126), pp. 1–6.
  27. Hopp B. et al. J. Laser Micro Nanoeng., 2010, no. 1(5), pp. 80–85.
  28. Lorenz P., Ehrhardt M., Zimmer K. Appl. Surf. Sci., 2012, no. 24(258), pp. 9742–9746.
  29. Hanada Y. et al. Appl. Phys. A, 2004, no. 4(79), pp. 1001–1003.
  30. Lorenz P., Ehrhardt M., Zimmer K. Phys. Procedia, 2012, vol. 39, рр. 542–547.
  31. Zhang J., Sugioka K., Midorikawa K. Appl. Phys. A, 1998, no. 5(67), pp. 545–549.
  32. Hopp B. et al. Appl. Phys. A, 2009, no. 4(94), pp. 899–904.
  33. Blonskyy I.V., Danko A.Y., Kadan V.N., Orieshko E.V., Puzikov V.M. Technical Physics, 2005, no. 3(75), pp. 358–363.
  34. Veiko V. P. et al. J. Phys. D: Appl. Phys., 1980, no. 8(13), pp. 1565.
  35. Koval V. V. et al. J. Opt. Technol., 2017, no. 7(84), pp. 447–452.
  36. Cheng Y., Sugioka K., Midorikawa K. Proc. SPIE, 2005, vol. 5627, рр. 247–257.
  37. Kostyuk G. K. et al. Opt. Laser. Technol., 2022, vol. 152, рр. 108161.
  38. Khonina S.N. Opt. Eng., 2013, no. 9 (52), pp. 091711.
  39. Rubano A. et al. J. Opt. Soc. Am. A, 2019, no. 5(36), pp. D70–D87.
  40. Cardano F. et al. Appl. Opt., 2012, vol. 51, рр. C1–C6.
  41. Beresna M. et al. Appl. Phys. Lett., 2011, no. 20(98), pp. 201101.
  42. Zhou J. et al. Sci. Rep., 2016, no. 1(6), pp. 1–9.
  43. Qi J. et al. Photonics Res., 2021, no. 5(9), pp. 803–813.
  44. Ahamed M.J., Senkal D., Shkel A.M. Proc. IEEE ISISS, 2014, рр. 1–4.
  45. Wang Y., Shkel A.M. Proc. IEEE ISISS, 2016, рр. 101–104.
  46. Ahamed M.J., Senkal D., Shkel A.M. Proc. IEEE ISISS, 2014, рр. 1–2.