ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

4
Issue
vol 67 / April, 2024
Article

DOI 10.17586/0021-3454-2023-66-4-335-341

UDC 543.42; 621.384.3

ISSUES OF DEVELOPING A FIBER-OPTIC CUVETTE METER FOR THE CONCENTRATION OF METHANE IN THE AIR IN OIL AND GAS INDUSTRY

I. G. Chobanzade
National Aerospace Agency of the Azerbaijan Republic; Manager


A. E. Babakhanov
State Oil Company of the Azerbaijan Republic;


Read the full article 

Abstract. Abstract. The article is devoted to the development of a fiber-optic cuvette meter of methane concentration at oil and gas enterprises. The subject of the study is the development of theoretical foundations for optimizing the design of such a meter in which the main operating indicator of the meter reaches an extreme value. The purpose of the work is to investigate the possibility of finding the optimal relationship between the main regime indicators, at which the selected optimization criterion reaches the maximum value. An unconstrained optimization problem is formulated, in which an additional condition is added to the optimization functional using the Lagrange multiplier. A form of functional connection between the main regime indicators has been obtained, in which the goal functional reaches a minimum value. The found relationship between the main indicators is characterized as the worst, which should be avoided in practice.
Keywords: meter, concentration, methane, cuvette, optimization, functional

References:
  1. Xian Q., Lv H., Yao Y., Cheng C., Zhou Z. IEEE Photonics journal, 2022, no. 5(14), October.
  2. Cheng W., Han J., Wu Y. Sensors, 2012, vol. 12, рр. 12729–12740, DOI:10.3390/s120912729.
  3. Xu S., Chen M. Meas. J. Intern. Meas. Confed., 2012, vol. 45, рр. 325–332, DOI: 10.1016/j.measurement.2011.11.015.
  4. Gao Q., Zhang Y., Yu J., Wu S., Zhang Z., Zheng F. Sensors Actuators A Phys., 2013, vol. 199, рр. 106–110, DOI:10.1016/j.sna.2013.05.012.
  5. Bekele W., Guinguina A., Zegeye A., Simachew A., Ramin M. Methane, 2022, vol. 1, рр. 82–95, https://doi.org/10.3390/methane1020008.
  6. Lomov V.A. IOP. Conf. Series: Earth and environmental science, 2021, vol. 834, рр. 012032, DOI:10.1088/1755-1315/834/1/012032.
  7. Thalasso F., Anthony K.W., Irzak O., Chaleff E., Barker L., Anthony P., Hanke P., Gonzalez-Valencia R. Hydrol. Earth Syst. Sci., 2020, vol. 24, рр. 6047–6058, https://doi.org/10.5194/hess-24-6047-2020.
  8. Siegenthaler A., Welch B., Pangala S.R., Peacock M., Gauci V. Biogeosciences, 2016, vol. 13, рр. 1197–1207, www.biogeosciences.net/13/1197/2016/.
  9. Riddick S.N., Ancona R., Mbua M., Bell C.S., Duggan A., Vaughn T.L., Bennett K., Zimmerle D.J. Atmos. Meas. Tech., 2022, vol. 15, рр. 6285–6296, https://doi.org/10.5194/atm-15-6285-2022.
  10. Mitchell A.L., Tkacik D.S., Roscioli J.R., Herndon S.C., Yacovitch T.I., Martinez D.M., Vaughn T.L., Williams L.L., Sullivan M.R., Floerchinger C., Omara M., Subramanian R., Zimmerle D., Marchese A.J., Robinson A.L. Environmental Science & Technology, 2015, no. 20(49), pp. 12602, DOI: 10.1021/acs.est.5b04018.
  11. Schoonbaert S.B., Tyner D.R., Johnson M.R. Applied Phys. B, 2015, vol. 119, рр. 133–142, DOI:10.1007/s00340-014-6001-0.
  12. Roy S., Desikan R., Duttagupta S.P. A novel, compact optical device for estimating the methane emissions in geological environment, November 2016, https://arxiv.org/ftp/arxiv/papers/1611/1611.08797.pdf.
  13. Cao F., Liu D., Lin J., Hu B., Liu D. Front. Optoelectron. China, 2010, no. 3(4), pp. 394–398.
  14. Cubillas A.M., Lopez M.S., Lazaro J.M., Conde O.M., Petrovich M.N., Higuera J.M.L. Photonic Crystal Fibers II, 2008, Proc. SPIE, vol. 6990, DOI:10.1117/12.780587.
  15. Wen-Qing W., Lei Z., Wei-Hua Z. Procedia Engineering, 2013, vol. 52, pp. 401–407.