ТЕХНОЛОГИЯ ПРИБОРОСТРОЕНИЯ

УДК 621. 383. 8

И. Н. ГОНЧАРОВ, Е. Н. КОЗЫРЕВ, Р. О. АСКЕРОВ

ИССЛЕДОВАНИЕ ВТОРИЧНО-ЭМИССИОННОЙ СПОСОБНОСТИ МНОГОКАНАЛЬНЫХ ЭЛЕКТРОННЫХ УМНОЖИТЕЛЕЙ НА ПОРИСТЫХ АНОДИРОВАННЫХ СТРУКТУРАХ

Рассматриваются особенности и результаты компьютерного моделирования процессов усиления вторично-эмиссионных каналов, диаметром не более 1мкм, в пористых структурах оксида алюминия.

Ключевые слова: вторичная электронная эмиссия, электронные умножители, оксид алюминия.

Вторично-эмиссионные (ВЭ) многоканальные умножители находят широкое применение в электронно-оптических преобразователях (ЭОП) 2-го и 3-го поколений, используемых в приборах ночного видения. В данных изделиях в качестве ВЭ-усилителей пространственнораспределенных потоков фотоэлектронов применяются микроканальные пластины (МКП).

Рис. 1

Конструкция МКП (рис. 1) представляет собой диск из свинцово-силикатного стекла, состоящий из спеченного множества (700—1000 шт.) идентичных микроканальных ячеек, каждая из которых, в свою очередь, содержит до 5000—6000 регулярно уложенных и спеченных идентичных миниатюрных трубчатых каналов диаметром от 5 до 10 мкм в зависимости от разновидности МКП. При приложении напряжения к металлизированным торцам пластины в процессе ее эксплуатации по стенкам каждого из каналов течет ток проводимости, создающий в них однородное электрическое поле с линейно возрастающим потенциалом. Таким

образом, все каналы преобразуются в идентичные вторично-эмиссионные усилители.

Микроканальные пластины имеют, в силу сложности конструкции, многоступенчатую технологию производства [1]. Данная технология достаточно отработана, однако столь сложна, что процент выхода годных МКП по-прежнему весьма низок и носит вероятностный характер. Указанные факторы сказываются на себестоимости продукции (в среднем достигающей 100 долл. за образец). Очевидно, что поиск альтернативных менее сложных конструкций мно-гоканальных вторично-электронных умножителей является актуальной проблемой.

Современные, хотя и недостаточно распространенные, аналоги — МКП из монокристаллического полупроводникового кремния, созданные на основе технологических процессов микроэлектроники и химии [2]. Данные пластины отличаются повышенным коэффициентом прозрачности, достигающим 0,9, поскольку микроканалы в них имеют квадратное сечение, по площади соизмеримое с сечениями круглых каналов стеклянных пластин. В технологии изготовления данных SiO₂/Si-MKП используются операции, отработанные при производстве полупроводников, в частности маскирующая фотолитография, при этом структура МКП формируется не из множества соединенных отдельных каналов, а из единой исходной заготовки, что способствует некоторому снижению себестоимости готовых изделий.

В последнее время в качестве альтернативы МКП рассматривается возможность изготовления многоканальных электронных умножителей на пористых структурах оксида алюминия, выращенных посредством электролитического анодирования. Фотоизображение сечения данной структуры, полученное с помощью электронного микроскопа, приведено на рис. 2.

Puc. 2

Пористый анодный оксид алюминия имеет уникальную "собственную" структуру, что обеспечивает возможность формирования пор с диаметром в диапазоне от нанометрового до субмикронного, высокую воспроизводимость геометрических параметров структуры на образцах большой площади, возможность управления геометрическими размерами пор и ячеек пористого оксида путем изменения состава электролита и режимов электрохимической обработки; кроме того, особенностью данной структуры является вертикальное расположение пор на почти одинаковом расстоянии друг от друга.

Исследования показали, что подбор электролита и режима анодирования позволяет получить структуру с диаметром пор до 1 мкм, следовательно, толщина структуры может достигать порядка 40—50 мкм, что позволит обеспечить соответствующее значения отношения l/d, где l — длина канала, d —его диаметр; в многоканальных умножителях $l/d \approx 40$ [1]. Такие многоканальные структуры отличаются, наряду со сравнительно низкой стоимостью, высокой эффективностью (вторично-эмиссионный выход Al_2O_3 в 2—2,5 раза выше, чем восстановленного свинцово-силикатного стекла, используемого в МКП, и достигает 5—7 единиц при характерной энергии подлета первичных электронов, составляющей несколько сотен электрон-вольт). Однако резистивные, электрические и геометрические характеристики данных структур, а соответственно и возможность их использования в качестве усилителей ламинарных и пространственно-распределенных электронных потоков требуют дополнительных исследований.

Для оценки эффективности многоканального умножителя, конфигурация и диаметр которого соответствуют пористой структуре Al₂O₃, целесообразно провести компьютерное моделирование происходящего в нем ВЭ-процесса. Модель данного процесса состоит из двух

математических описаний: модели распределения электрического поля в канале и модели поведения первичных и вторичных электронов в нем.

Первая из названных математических моделей получена на основе уравнения Пуассона для электрического поля в вакууме:

$$\nabla^2 U = -\frac{\rho}{\varepsilon_0},\tag{1}$$

где ∇^2 — дифференциальный оператор Лапласа, форма которого зависит от выбора координатной системы, $1/M^2$; *U* — потенциал поля, В; ρ — плотность объемного заряда, Кл/м³ (суммарный электрический заряд всех электронов в импульсе имеет отрицательный знак).

Поскольку предполагается, что многоканальные умножители не работают в режиме насыщения, то суммарные электрические заряды электронов в канале не должны влиять на распределение электрического поля в нем. Данное поле, с учетом заданных размеров каналов структуры на основе пористого оксида алюминия, характеризуется напряженностью порядка $1 \cdot 10^7$ В/м, поэтому правую часть уравнения (1) можно приравнять к нулю. Полученное в результате уравнение Лапласа $\nabla^2 U = 0$ решается с учетом граничных условий (диктуемых, в частности, режимами эксплуатации МКП в составе различных ЭОП), определяющих расчетные значения распределений электрических полей на входе и выходе каналов [3].

Далее необходимо произвести расчет траекторий первичных и вторичных электронов внутри канала. Движение электрона в электрическом поле описывается системой обыкновенных дифференциальных уравнений первого порядка:

$$\frac{dx}{dt} = V_x; \quad \frac{dV_x}{dt} = -\frac{e}{m}E_x;$$

$$\frac{dy}{dt} = V_y; \quad \frac{dV_y}{dt} = -\frac{e}{m}E_y;$$

$$\frac{dz}{dt} = V_z; \quad \frac{dV_z}{dt} = -\frac{e}{m}E_z,$$
(2)

где dx, dy — приращения поперечных координат, м; dz — приращение продольной координаты, м; dt — приращение времени, с; V_x , V_y , V_z — проекции вектора скорости на оси x, y, z соответственно, м/с; E_x , E_y , E_z — рассчитанные напряженности поля в проекции к осям x, y, z, В/м; $e = 1,6 \cdot 10^{-19}$ Кл — заряд электрона; $m = 9,1 \cdot 10^{-31}$ кг — масса электрона.

При расчете процесса вторичной эмиссии необходимо учитывать следующие начальные условия: угловое распределение вылетающих вторичных электронов — косинусоидальное; энергия вылета U_0 электронов соответствует диапазону 1—15 эВ [4].

Коэффициент вторичной эмиссии при каждом взаимодействии электронов со стенкой канала определяется выражением

$$\sigma = \beta(U_1)^{0,5},\tag{3}$$

где β — первый параметр вторично-эмиссионной эффективности; *U*₁ — электрический потенциал, определяющий энергию взаимодействия первичного электрона со стенкой канала, В.

Известно [4], что в относительно широкой области ускоряющих напряжений (от 0 до 100 В) выражение (3) является удобной аппроксимацией характеристики $\sigma(U_1)$.

Энергия вылета вторичных электронов определяется как

$$U_0 = \gamma U_1$$
,

где *ү* — второй параметр вторично-эмиссионной эффективности [4].

Согласно экспертной оценке при использовании Al_2O_3 -эмиттера вероятно некоторое снижение требуемого напряжения работы канала, а возможно и отношения l/d, по сравнению с хорошо изученными конструкциями на основе SiO₂. При сохранении традиционных значе-

ний данных параметров создаются предпосылки для интенсификации ВЭ-процессов. Очевидно, что это приведет к зарядовому и токовому насыщению усилительной способности канала [5], а следовательно, к аномальным условиям его работы.

Рассмотренные модели распределения электрического поля и поведения электронов были реализованы в виде программных продуктов. Далее был произведен компьютерный расчет коэффициента влияния величины l/d на усилительную способность M канала диаметром 1 мкм при различных ускоряющих напряжениях U, прилагаемых к каналу. При этом были приняты следующие условия:

— диапазон изменения отношения l/d составляет от 1 до 40;

— контактные электроды с запылением металла в глубь канала не рассматриваются;

 — взаимодействие первичного электрона со стенкой канала происходит на расстоянии 1—3 мкм от входа;

— энергия данного взаимодействия соответствует реальному значению, характерному для применения плоских ЭОП 2-го поколения, и равна 500 эВ, что приводит к генерации вторичных электронов в соответствии с характерной для Al₂O₃ вторично-эмиссионной эффективностью и с учетом пуассоновского распределения;

— используемые при моделировании первый и второй параметры вторично-эмиссионной эффективности соответственно равны β=0,27 и γ=0,05;

— зарядовые явления в канале не учитываются.

Основная задача заключалась в получении зависимостей M(l/d) при разных напряжениях U для ВЭ-каналов пористой структуры Al_2O_3 . Расчеты показали, что дальнейшее практическое и теоретическое изучение режимов усиления целесообразно проводить при l/d=10...40и U=100...400 В. В соответствии с этим были построены зависимости M(l/d), характеризующие распределение усилительной способности канала при различных значениях напряжения питания U (рис. 3).

Анализ полученных зависимостей, позволяет сделать следующие выводы.

1. Оксид алюминия пригоден для изготовления многоканальных электронных умножителей. Оптимальной конфигурацией канала следует признать вариант, когда $l/d\approx30$ и $U\approx300$ В. Согласно расчетам значение M в данном случае превышает 10 000, что соответствует усилительной способности каналов традиционных МКП из свинцово-силикатного стекла.

2. Распределение усилительной способности каналов в различных режимах работы имеет характерный для данной величины вид параболы. Распределения гладкие, относительно симметричные, среднеквадратические отклонения величин усиления для каждого из представленных на рис. 3 вариантов значительно меньше соответствующих средних значений *M*.

3. Наиболее важной проблемой, которая проявится при физических экспериментах с реальными структурами (образцами) после определения технологичного способа оптимизации их резистивных свойств, могут стать повышенные шумовые характеристики пористого оксида алюминия, как вторичного усилителя потоков электронов в пространстве, вследствие малости диаметра каналов и невысокой прозрачности структуры; поэтому предпочтительными являются низковольтные режимы работы каналов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Кулов С. К., Козырев Е. Н., Макаров Е. Н., Алкацева Т. Д., Кесаев С. А. Микроканальные пластины в технике ночного видения. Теория, технология, применение. Владикавказ: Терек, 2002.
- 2. Пат. 2388109 РФ. Способ получения кремниевой микроканальной мембраны в монолитном обрамлении / *Н. В. Вандышева, С. И. Романов.* 2009.
- 3. Гончаров И. Н. Особенности граничных условий в САПР канальных электронных умножителей // Вестн. Воронеж. гос. техн. ун-та. 2012. Т. 8, № 2. С. 41—45.
- 4. Гончаров И. Н., Козырев Е. Н., Кцоев К. Ю. Моделирование поведения электронов в канальных умножителях с рельефными стенками // Устойчивое развитие горных территорий. 2012. № 14. С. 135—139.
- 5. Гончаров И. Н. Моделирование зарядовых явлений в САПР вторично-эмиссионных умножителей // Вестн. Воронеж. гос. техн. ун-та. 2009. Т. 5, № 5. С.148—150.

Сведения об авторах

Игорь Николаевич Гончаров	 д-р техн. наук, профессор; Северо-Кавказский горно-металлургический
Евгений Николаевич Козырев	 институт (государственный технологический университет), кафедра элек- тронных приборов, Владикавказ; E-mail: goncharov-scgtu@mail.ru д-р техн. наук, профессор; Северо-Кавказский горно-металлургический
	институт (государственный технологический университет), кафедра электронных приборов, Владикавказ; E-mail: kozyrev@skgtu.ru
Роман Олегович Аскеров	 Северо-Кавказский горно-металлургический институт (государственный технологический университет), кафедра электронных приборов, Влади-кавказ; ассистент; E-mail: asker2005@rambler.ru
Рекомендована кафедрой электронных приборов	Поступила в редакцию 09.12.13 г.