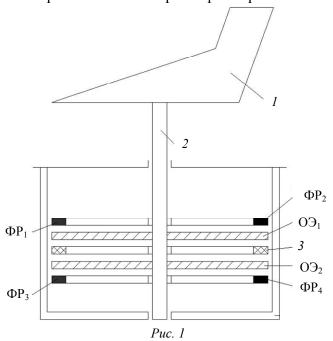
УДК 681.783.2

DOI: 10.17586/0021-3454-2015-58-2-143-146

Ш. Ю. Шипулин, М. Ф. Обади

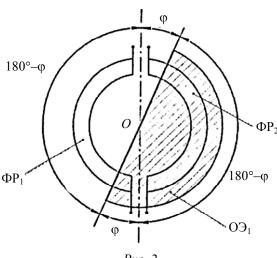
ОПТОЭЛЕКТРОННЫЙ ПРЕОБРАЗОВАТЕЛЬ НА ОСНОВЕ ПОЛУКОЛЬЦЕВЫХ ФОТОРЕЗИСТОРОВ ДЛЯ КОНТРОЛЯ УГЛА ПОВОРОТА ФЛЮГЕРА


Рассмотрена измерительная схема оптоэлектронного преобразователя флюгерной системы. Использованы полукольцевые фоторезисторы для контроля направления горизонтального ветра. Приведены физическая и математическая модели оптоэлектронного преобразователя.

Ключевые слова: оптоэлектронный преобразователь, фоторезистор, микропроцессорная измерительная схема.

Преобразователи угла поворота флюгеров широко применяются для контроля направления горизонтального ветра в метеорологии, а также с целью обеспечения безопасности различных строительных конструкций и техногенных объектов.

Большинство преобразователей угла поворота флюгеров на основе электромагнитных элементов [1], реостатных преобразователей с подвижными контактами [2] и др. имеют невысокую надежность из-за скользящих контактов и сложную конструкцию с измерительной схемой.


Качество преобразователей углов поворота флюгера можно существенно повысить, разрабатывая их на основе полукольцевых фоторезисторных элементов. Авторами предложена новая конструкция [3] оптоэлектронного преобразователя углов поворота флюгера в декартовых координатах в диапазоне 0— 360° (рис. 1), в которой стержень поворота 2 флюгера 1 помещен в неподвижный кольцеобразный источник излучения 3, расположенный между неподвижными верхними (ΦP_1 и ΦP_2) и нижними (ΦP_3 и ΦP_4) полукольцевыми фоторезисторами, соединенными в кольцо. Эти фоторезисторы смещены друг относительно друга на 90° , между источником 3 и приемниками излучения расположены одинаковые полудисковые оптические экраны $O \Theta_1$ и $O \Theta_2$, жестко закрепленные на стержне флюгера 2.

На рис. 2 приведена физическая модель полукольцевых фоторезисторов ΦP_1 и ΦP_2 с оптическим полудисковым экраном ОЭ1, при этом равномерно распределенный источник излучения освещает плоскость чертежа. Обозначим темновые сопротивления ΦP_1 и ΦP_2 через ΦP_{1r} и ΦP_{2r} , а световые сопротивления — через ΦP_{1c} ΦP_{2c} . Введем значение темнового сопротивления $r_{\rm T}$ на единицу угла поворота, считая, что

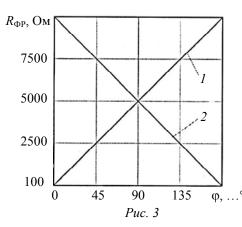
$$R_{\Phi P_{1T}} = R_{\Phi P_{2T}} = R_{\Phi P_{T}}, \tag{1}$$

$$r_{\rm T} = \frac{R_{\rm \Phi P_{\rm T}}}{180}.$$
 (2)

Puc. 2

Аналогично считаем, что значение светового сопротивления $r_{\rm c}$ на единицу угла поворота равно

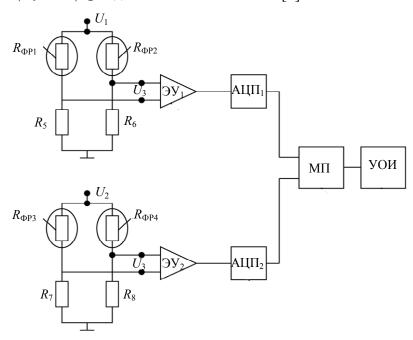
$$R_{\Phi P_{1c}} = R_{\Phi P_{2c}} = R_{\Phi P_{c}},$$
 (3)


$$r_{\rm c} = \frac{R_{\rm \Phi P_c}}{180}.\tag{4}$$

При повороте оптического экрана ОЭ1 (рис. 2) на угол ф по часовой стрелке суммарное сопротивление фоторезистора будет равно

$$R_{\Phi P_1}(\phi) = r_T \phi + r_c (180 - \phi) = \phi(r_T - r_c) + r_c 180.$$
 (5)

При повороте на угол ф оптического экрана ОЭ1


$$R_{\Phi P_2}(\varphi) = r_c \varphi + r_T (180 - \varphi).$$
 (6)

На рис. 3 ($1 - \Phi P_1$, $2 - \Phi P_2$; поворот оптического экрана ОЭ1 на угол ф по часовой стрелке) представлено изменение сопротивлений фоторезисторов при следующих исходных данных: $R_{\Phi PT} = 10~000$; $R_{\Phi Pc} = 100~$ Ом; r_c =0,55; r_T =55,55 Ом/град. Анализ графиков показывает, что при одинаковых структурах и геометрических размерах сопротивление полукольцевых фоторезисторов $R_{\Phi P1}$ и $R_{\Phi P2}$ изменяется линейно при углах поворота экрана ОЭ_{1 ϕ} 0—180°, при этом $R_{\Phi P1}$ изменяется с 100 до 10 000 Ом, а $R_{\Phi P2}$ — с 0,1 до 100 МОм.

На рис. 4 приведена измерительная схема оптоэлектронного преобразователя угла поворота флюгера

 $(R_{\Phi P1} - R_{\Phi P4} - COПРОТИВЛЕНИЯ ПОЛУКОЛЬЦЕВЫХ ФОТОРЕЗИСТОРОВ, СДВИНУТЫХ ОТНОСИТЕЛЬНО ДРУГ$ друга на 90°; R_5 — R_8 — сопротивление плечей мостов; $\Im Y_1 \Im Y_2$ — электронные усилители; АЦ Π_1 АЦ Π_2 — аналого-цифровые преобразователи; М Π — микропроцессор; УОИ — устройство (экран) для отображения величины и направления угла поворота флюгера; U_1 , U_2 — напряжения питания мостов; U_3 и U_4 — выходные напряжения мостов). Четыре полукольцевых фоторезистора включены попарно в плечи двух мостовых схем (рис. 4), выходы которых через $\Im Y_1$ и $\Im Y_2$ и АЦ Π_1 и АЦ Π_2 подключены к М Π и УОИ [3].

Puc. 4

Выходные напряжения мостовых схем (рис. 4) определяются из следующих выражений:

$$U_3 = U_1 \frac{R_{\Phi P_1} R_6 - R_{\Phi P_2} R_5}{\left(R_{\Phi P_1} + R_{\Phi P_2}\right) \left(R_5 + R_6\right)},\tag{7}$$

$$U_4 = U_2 \frac{R_{\Phi P_3} R_8 - R_{\Phi P_4} R_7}{\left(R_{\Phi P_3} + R_{\Phi P_4}\right) \left(R_7 + R_8\right)},\tag{8}$$

Выходное напряжение первой мостовой схемы (см. рис. 4), согласно (7), U_3 =0 (т.е. имеет минимальное значение), так как $R_{\Phi P1}$ = $R_{\Phi P2}$, выходное напряжение второй мостовой схемы имеет максимальные значения U_4 = $U_{4\text{max}}$, поскольку $R_{\Phi P3}$ полностью освещен (100 Ом), а $R_{\Phi P4}$ полностью затемнен (10 000 Ом). Так как плоскости расположения ΦP_1 и ΦP_2 , а также ΦP_3 и ΦP_4 сдвинуты на 90°, а ОЭ₁ и ОЭ₂ установлены одинаковым образом в параллельных плоскостях (между кольцевым источником излучения 3, см. рис. 1, и соответственно парами ΦP_1 , ΦP_2 , ΦP_3 , ΦP_4), при повороте флюгера I с оптическими экранами ОЭ₁ и ОЭ₂ на угол ΦP_1 изменения сопротивлений фоторезисторов ΦP_1 — ΦP_4 изменяются выходные напряжения мостовых схем ΨU_3 и ΨU_4 , которые при $\Psi = 0$ — ΨU_3 0° неоднократно переходят через нулевые значения и изменяют свои знаки. Изменения напряжения ΨU_3 и ΨU_4 можно отобразить в двухкоординатной системе на экране УОИ (см. таблицу). Параметры угла поворота флюгера определяются как

$$\varphi = \operatorname{arctg} \frac{U_3}{U_4}, \tag{9}$$

$$OA = \sqrt{U_3^2 + U_4^2} \,. \tag{10}$$

φ,°	<i>U</i> ₃ , B	<i>U</i> ₄ , B	Направление в двухкоординатной системе на экране
0	0	$U_{4\mathrm{max}}$	$\begin{array}{c c} & & U_3 \\ & & A \\ -U_4 & 0 & U_4 \\ & & -U_3 \end{array}$
90	$U_{ m 3\ max}$	0	$ \begin{array}{c cccc} & U_3 \\ & A \\ & -U_4 & 0 & U_4 \\ & & -U_3 \end{array} $
180	0	$-U_{4\mathrm{max}}$	$ \begin{array}{c cccc} A & & & \\ -U_4 & 0 & U_4 \\ & & & & \\ -U_3 & & & \\ \end{array} $
270	$-U_{ m 3\ max}$	0	$-U_4$ 0 U_4 U_4 U_4 U_4

В заключение отметим, что полукольцевые фоторезисторы могут быть изготовлены на основе полупроводникового материала CdSe, нанесенного путем термического испарения в вакууме на прозрачную кольцеобразную подложку, а в качестве электродов можно использовать индий или алюминий, при этом диаметр полукольца может составлять 20 мм, а ширина электродов 2 мм. Кольцевой источник излучения должен иметь большую яркость. Разработанный оптоэлектронный преобразователь имеет диапазон 360° и погрешность угла поворота флюгера не превышает 0,5 %.

Работа выполнена в рамках гранта Президента РФ для поддержки ведущих научных школ (НШ-2357.2014.8).

СПИСОК ЛИТЕРАТУРЫ

- 1. Слисинок В. П. Прибор контроля направлении и скорости ветра. Патент RUN210756 ClG01 W1/02. Опубл. 10.01.1998.
- 2. Брагин В. Е., Кудрявцев Л. С., Левашкин В. Е. Устройство для определения направления и скорости ветра. Патент RUN2073872 ClG01 P5.06. Опубл. 20.02.1997.
- 3. Азимов Р. К., Шипулин Ю. Г., Райимжонова О. С. Устройство для измерения скорости и определения направления горизонтального ветра. Патент UZI AP 04754. Опубл. 30.09.2013.

Сведения об авторах

Шухрат Юрьевич Шипулин соискатель; Юго-Западный государственный университет, кафедра вычислительной техники, Курск; E-mail: sshukhrat@yahoo.com

Мехдхар Фадхль Ахмед Обади аспирант; Юго-Западный государственный университет, кафедра вы-

числительной техники, Курск; E-mail: mehdar@mail.ru

Рекомендована Юго-Западным государственным университетом Поступила в редакцию 10.09.14 г.