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The problem of output regulation of plants affected by nonlinear exogenous systems
is addressed. The new approach of designing the controller having an internal model,
which repeats the dynamics of the disturbance is presented. Two realizable control-
lers which using measurements of the output and guarantees the achievement of a
control goal are proposed: the one for known parameters and the adaptive one.
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Introduction. In this paper we present the new approaches of internal model design for output
regulation problems with nonlinear exogenous systems. The problem of output regulation for nonli-
near systems has been studied in several works; the monograph [1] shows a background. The main
idea is to design the controller having an internal model which repeats the dynamics of the distur-
bance [2, 3] or tends to repeat with adaptive tuning of critical parameters of exogeneous system [4].
While for such systems the theory of linear regulation is well established [3], a fully satisfactory
nonlinear version does not seem to have been proposed yet [5S—S8]. In the recent paper [9], we have
shown how a result of this kind can be achieved in the case of linear systems. In the paper [10] an
extension of such results to the case of nonlinear systems affine in the control input is presented.

Problem formulation. Consider the simple plant

y=u+ S(W) (1)
driven by the control u and the disturbance ¢, which is the output of nonlinear exogeneous system
w=s (w, 6) (2)

with the state weR?, nonzero initial conditions w(O) and some constant, possibly unknown, para-
meter 0 <0, and the following view of the functions s and o :
si(w)=wy, 5, (w)= 9w13, 3(w)=w
or
5=08. (3)
The goal is to design the control u in order to provide asymptotic convergence of the output
y to0:

lim y(¢)=0. (4)

t—>0
Internal model design. The motivation of this study is to find new approaches of internal
models design for output regulation problems with nonlinear exogenous systems.
The main idea is to design the controller having an internal model, which repeats the dynamics

of the disturbance without trying to find functions o(w) and y(o), which satisfies
MS(W):FG(W)-FG\V(W), (5)

v(w)=7(c(w)), (6)
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where a pair (F , G) is in canonical controllable form with Hurwitz F', the function \y(w) is a
steady state of the control input ensuring the identity
O:\|J(w)+8(w). (7)
However, it is quite difficult to find analytically appropriate functions 6(w) and y(c) .
Let the dynamics of the system be augmented by a chain of two integrators
u=ng, N =My, Ny =V,

in which v is a new input, to be designed.
Define

Fol =Y, §2=ﬂ1+5, &3 =112+8,
so that
&1 :&2, &2 :&3, &3 :V+8:V+963,
1.€.
&=F§+G[v+663

in which ', G are in “prime form”, i.e.

-

010
F=0 01|, G=
0 00
The nominal feedback-linearizing control
Voom = —08° + KE
yields a system
&=(F+GK)E,

in which K can be chosen so that (F +GK ) 1s Hurwitz.

Such control is not implementable. Instead, observing that & =&, —n; we pick
A 3 A
V= —Osat[(éz —nl) }+K<‘,,
in which sat(-) is a saturation function and % is generated by the observer
& =¢, +Ka2(y—<%1),
%22%3+K2a1(y—%1), (®)
%3 = K3ao (y_‘%l)

with some positive design parameters a,,a;,a,. This control is implementable, because n; is avail-

able for feedback.
As result, we get

&=(F+GK)E+GA,,

A, =K(%—§)+6[63 —sat[(%z —n1)3ﬂ.

Define the errors as usual:

in which
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) R R R
6 =K (&1‘&1)9 62=K(§2—§2)a e3=83—&; 9)

and compute its derivatives
él = —Ka3€1 + K62 . €2 = _Kazel + Ke3 . 63 = —Kalel + K(tj"l‘ Al . (10)

Rewrite (10) in matrix form
é=xde+B[KE+A],

where
-a, 1 0 0
A=|—-a, 0 1|,B=|0]|.
—a; 0 0 1

Let us pick numbers a,a;,a, such that the matrix 4 is Hurwitz.

2 e e
Note that &, —n =——2+§&, -1, =——=+3 . Hence,
K K

-2
K 0 0 e oy

Aj=-K| 0 «' 0||e [+6 53—sa{(5——22”
0 0 1|le *

that we rewrite as
Ai(e,8)=M (x)e+6I(e,8).
If k>1,then M(x)=K.
If initial conditions for the exogenous variable w lie in a compact (invariant) set (which is a
reasonable assumption), we have ‘S(t)‘ <38, for some . Thus, if the threshold of the saturation is

larger than 6(3), we have F(O,S)ZO. Finally, since o is bounded and the saturation function is

bounded, we have that also I'(e,8) is bounded. In other words, I'(e,8) is a bounded function that

vanishes at e =0 . We can take advantage of such properties in the subsequent analysis.

The full dynamics of the closed-loop system may be described with the state vector x = (éj,
e

which satisfies the following equation:
£\ ((F+GK)&+GM (x)e+Gor (e,d)
¢) \ xde+B[K&+M (x)e+0T(e,8)] )’
where both (F+GK) and 4 are Hurwitz.
From this point on the analysis can proceed using the small-gain theorem. In fact, in the lower
equation, the term F(e,S) , which is bounded function vanishing at e=0, can be bounded as
‘F(e,S)‘ < Ne, for some N . Hence, by increasing k one can arbitrarily lower the “gain” between

the “input” & and the state e. The upper equation, in turn, viewed as a system with state & and in-
put e, is an input-to-state stable system, with a fixed gain. From this, by standard arguments it is de-
duced that if « is large enough, the equilibrium point (&,e) = (O, O) is globally stable.

Remark. The problem could have been addressed also with the approach of [8], but we are now

proposing a different approach, because we think that this is more convenient to address the case of un-
certain O (the approach of the paper [8] presumed accurate knowledge of the exogenous system).
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Adaptive output regulation. In this section we will show the realizable adaptive controller which
using measurements of the output y only allows to achieve the goal (4) without knowledge of 0. Con-

sider the control law with an adaptive internal model

”:Tha
N =My, M=V,
oA A 3 .
vz—esat[(ﬁz—nl) }rKg, (12)

0= uysat{(?;z ”11)3}

where p > 0 is a positive number, %1: %2, %3 are the states of the observer of the form (8).

The simulation results of such adaptive feedback are given in the next section.

Simulations. In this section we show the results of simulation for plant (1)—(3) to achieve the
goal (4). The control law with an adaptive internal model (12) was used to stabilize the plant with an
external disturbance. Fig. 1 shows transients for the output controller with known 6 and different
k, as well as disturbance signal. Fig. 2 shows transients for the output controller with known and
different O ; this parameter affects exogenous signal as shown. Fig. 3 and 4 show the output control-
ler and estimation of 6 under different values of parameters. The robustness of proposed control law
shown under different conditions.
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Conclusion. In this paper the new approach of internal model design for output regulation
problem with nonlinear exogenous systems is studied. The main idea is to design the controller hav-
ing an internal model, which repeats the dynamics of the disturbance. The realizable controller
which using measurements of the output and guarantees the achievement of a control goal is pro-
posed. Also, the realizable adaptive controller which using measurements of the output without
knowledge of disturbance parameters provided as well. The work is in progress to show how some
issues left open in the current presentation can be addressed.
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HENMWHEWHbIE 3K30NEHHbLIE CUCTEMbI U MOCTPOEHUE BHYTPEHHEN MOOENU
A. Vlcm:lopu1, A. A. anpKVIH2, n. A. 5)KVIX3TnOBz, B. C. FpOMOB2

"Pumckuii yHusepcumem "CanueHuya", 00185, Pum, Umanus

2)/Hueepcumem UTMO, 197101, Cankm-llemepbype, Poccusi
E-mail: a.pyrkin@gmail.com

PaccmatpuBaeTcsa 3agadva ynpaBneHns no BbIxogy obbekTamu, NoABEPXXEHHbIX BO3AENCTBUAM He-

JNIMHENHBIX 3K30r€HHbIX CUCTEM. npe,EI,CTaBJ'IeH HOBbIA NOAXOA NOCTPOEHUA perynatopa, coaepxawero
BHYTPEHHIOK MOAerb, KOTOPbIN NOBTOPSET OMHAMUKY BHELUHUX BO3gencteun. MNpeanoxeHo asa peanuu-
3yeMbIX perynaropa, ncnosnb3ynwnx nsMmepeHna Bbixoaa obbekTa u rapaHTMpyrowmnx 0OCTUXMMOCTb Le-
NN yNpaBeHUs: OOUH A5 U3BECTHLIX NapamMeTpoB 1 OOUH adanTUBHBIN PErynsaTop.

KnroueBble cnoBa: cuUCTEMbI ynpaBneHns, HenuHenHble CUCTEMbI, adanTUBHbIE CUCTEMbI,

BHYTPEHHAA Moaenb
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