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Abstract. The deployment of Convolutional Neural Networks (CNNs) models on embedded systems faces mul-
tiple problems regarding computation power, power consumption and memory footprint. To solve these problems, a 
promising type of neural networks that uses 1-bit activations and weights emerged in 2016 called Binary Neural Net-
works (BNNs). BNN consumes less energy and computation power mainly because it replaces the complex heavy convo-
lution operation with simple bitwise operations. However, the quantization from 32-float point to 1-bit leads to accuracy 
loss and poor performance, especially on large datasets. This article presents a review of the key optimization techniques 
which influenced the performance of BNNs and led to higher representation capacity of BNN models, as well as an 
overview of the application methods of BNNs in object detection tasks and compares the performance with the real value 
CNN.  
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Аннотация. Развертывание моделей сверточных нейронных сетей (СНС) во встраиваемых системах ос-
ложнено множеством проблем, связанных с вычислительной мощностью, энергопотреблением и объемом памя-
ти. Для решения этих проблем в 2016 г. создан многообещающий тип нейронных сетей, использующих 1-битную 
активацию и веса, — бинарные нейронные сети (БНС). Такие сети потребляют меньше энергии и вычислитель-
ных мощностей, так как заменяют сложную операцию тяжелой свертки простыми побитовыми операциями. Одна-
ко квантование с 32-разрядной плавающей запятой до 1 бита приводит к потере точности и снижению производи-
тельности, особенно при больших наборах данных. Представлен обзор ключевых методов оптимизации, которые 
повлияли на производительность БНС и привели к повышению репрезентативности их моделей, также представ-
лены обзор способов применения БНС в задачах обнаружения объектов и сравнительный анализ их производи-
тельности с реальным значением.  

Ключевые слова: бинарные нейронные сети, оптимизация БНС, обнаружение объектов, квантование, би-
наризация, компьютерное зрение, искусственный интеллект 

Ссылка для цитирования: Шаккуф А. Обзор методов оптимизации бинарных нейронных сетей // Изв. вузов. 
Приборостроение. 2023. Т. 66, № 11. С. 926—935. DOI: 10.17586/0021-3454-2023-66-11-926-935. 
 

 
 
Introduction. Convolutional Neural Networks (CNN) have pushed Artificial Intelligence (AI) 

limits in many aspects, including but not limited to image classification [1, 2], object recognition  
[3, 4], speech emotion recognition [4—6], object detection [7] and classification of noisy signals [8]. 
CNNs have heavy designs with massive computational costs and parameters size, which makes it 
difficult to deploy CNN on the edge and portable devices without model compressing techniques. 
One of compression techniques is quantization, in which network parameters are represented with 
data types of smaller size. The most severe quantization technique in binarization, in which weights 
and activations are represented using 1-bit and the resulting networks are called Binary Neural Net-
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works (BNNs). BNNs represent the ideal class of neural network for edge inference especially for 
battery driven devices, due to their use of XNOR for multiplication: a fast and cheap operation to 
perform with much smaller times of memory accesses. Times of memory access is important be-
cause each hardware consumes certain amount of energy for each memory access [9]. Moreover, 
their parameters are 32x times more compact, which increases opportunities for caching, providing 
further potential performance boosts. However, binarization dramatically improves inference speed 
but accuracy is greatly affected. For example, binary connect network performs classification on CI-
FAR-10 dataset with accuracy 10% less than the accuracy of the real value network [10] and the loss 
in accuracy in much larger on largescale datasets such as ImageNet. Figure* shows the great benefits 
of some BNN models in terms of models’ sizes with acceptable inference latency. The loss in repre-
sentation capacity of BNNs makes research for better binary feature maps representation -while 
training- a matter of central importance. Because of that, starting from 2016, a lot of research has 
been done to optimize BNNs and test its’ performance in real applications. There are few reviews on 
BNNs, but our review is different from all other reviews in two points: 

— we summarize the key optimization techniques that improved the performance of BNN to a 
large extent; other reviews summarize all the previously done research; 

— we focus on works that use BNNs in object detection tasks and review all the previously 
conducted research in this field of computer vision. 

 

Key optimization techniques of BNNs. Optimizing the training process of BNN is essential 
to gain the availability to train BNN on the edge. [11] provides a new low-cost strategy for BNN 
training that reduces the used memory by up to 5.44x while inducing little to no accuracy loss. Au-
thors notice that high-precision activations should not be used while training BNNs, since we are 
only concerned with weights and activations’ signs. Specifically, authors of [11] present the first 
successful combination of binary activations and binary and binary weight gradients during neural 
network training. An intuitive method to lower the memory footprint of training is to simply reduce 
the batch size. However, doing so generally leads to increased total training time due to reduced 
memory reuse [12]. The method in [11] does not conflict with batch size tuning, and further allows 
the use of large batches while remaining within the memory limits of edge devices. Authors used the 
standard BNNs training method of Courbariaux [10] as a baseline for comparison. 

Authors in [10] introduce a method for training BNNs and perform two sets of experiments on 
two platforms: Torch7 and Theano. They operate on the binarizations approaches introduced by 
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[13]. [13] introduces two approaches to transfer high-precision NNs to BNNs. The first approach is 
deterministic and the other one is stochastic. The deterministic approach is formulated as:  

1    if 0,
sgn( )

1    otherwise.
b x

x x
 

  
 

Where bx  is the binarized value (weight or activation), x is the high-precision variable. While 
the stochastic approach is formulated as:  

 1    with probability ;

1    with probability 1 ,
b p x

x
p

   
 

 

where   is the hard sigmoid function; 
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Courbariaux [10] states that stochastic binarization is more appealing than the deterministic 
one, but harder to implement as it requires the hardware to have a random generation unit (peri-
pheral). So, it is quite often preferable to use the deterministic approach over the stochastic one. 
The negative side of [10] is that real-valued gradients of the weights are accumulated in real-
valued variables because they are required for Stochastic Gradient Descent (SGD) to work at all. 
However, this problem has been solved by [11]. The derivative of sign function is zero almost 
everywhere, and that prevent performing backpropagation. This problem has been solved by [14, 
15], where the authors introduced what is called “straight-through estimator”. [10] uses the same 
approach as [14, 15] for gradient estimation but adds to it a saturation effect. Authors in [10] also 
wrote an optimized binary matrix multiplication kernel for GPU which performs 7x faster than the 
unoptimized GPU kernel. 

It is well known that we add a regularization term like 1L  and 2L  to a model to prevent over-

fitting and as a result we obtain robust generalization. If we use these regularization functions while 
training binary NN, it will direct the weights to be near zero and this is not compatible with BNNs, 
because we need the weights to be around –1 and +1. So, to make the regularization term more gen-
eral, authors in [16] introduces scaling factor   which makes the regularization function symmetric 
and has two minimums at ,  . Those scales are embedded into the layers parameters and thus 

are learnable while training. 
Authors in [17] provide a smart algorithm (framework) for automatic search of compact but 

accurate BNNs architecture. The main idea is to expand — while we binarize the network — each 
layer of the network by a factor of a  where  0.25, 0.5, 1, 2, 3, 4a . Specifically, authors create 

a generation of networks architectures, each architecture corresponds to an expansion ratio. After 
training, we choose the best candidate (best BNN architecture) using a fitness func-

tion    max Acc FLOPs,0kf a    Where FLOPs and Acc are float operations and Top-1 vali-

dation accuracy of the network of an individual ka ,   is the trade-off parameter. 
Applying x-nor and bit-count operations causes and accumulates notable quantization error, 

which usually results in inconsistent signs in binary feature maps compared with their full-precision 
counterpart [18]. To handle this inconsistency, [18] present a channel-wise interaction based binary 
convolutional neural network learning method (CI-BCNN) to learn BNN with channel-wise interac-
tions to reduce the accumulated error and obtain an efficient inference. While in [19], authors ap-
proximate the real value weights with linear combination of multiple binary bases and use that to 
alleviate information loss in the forward pass. A network called Bi-Real proposed in [20] connects 
the float activations to activations of the consecutive block, through an identity shortcut. Conse-
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quently, compared to the standard 1-bit CNN, the representational capability of the Bi-Real net is 
significantly enhanced. 

Unlike [18], [21] proposes an approach that gives weights to binaries variables and is called 
Balanced Binary neural networks with Gated residual (BBG for short). First, weight-balanced bi-
narization is presented so binary weights can capture more information contained in activations. 
Second, a gated residue is appended to make recompense for the loss of information during the 
forward pass, with a slight increase. Both techniques can be encapsulated as a generic network 
module that supports different network architectures for different tasks including detections. Au-
thors assure deployment efficiency on mobile devices using a framework called daBNN and was 
introduced by [22].  

According to central limit theorem (CLT) [23, 24], the general description for activation is that 
they are nearly Gaussian, which makes it hard for the  .sign  function to capture the higher-order 

statistics such as variance. This fact motivated the authors of [25] to propose a new approach for bi-
narization called „Sparsity-Inducing BNN“ (Si-BNN). The new approach tries to maximize the mu-
tual information between inputs and outputs of a single layer by a proper (optimal) choosing of the 
sparsity threshold  . Binarization equation and backward gradient estimation via straight-through 
estimator (STE) formulas are: 

 
1    if ,

0    otherwise;b
x

X X
  

   


    
1    if   0 1,

0    otherwise.

X

X

   
  

 

Training Si-BNN and testing on ImageNet, MNIST and FICAR-10 benchmarks demonstrate 
that Si-BNN dramatically outperforms current best performing methods like QNet in [26] and 
BENN-6, Bagging in [27], lowering the performance gap between full-precision networks and bina-
rized neural networks. 

Compared to previous research that demonstrated the viability of BNNs via experiments, [28] 
explains why these BNNs work in terms of the High-Dimensional geometry. [28] shows that BNNs 
trained using the method of [10] work because of the high-dimensional geometry of binary vectors. 
In particular, the ideal continuous vectors that extract out features in the intermediate representations 
of these BNNs are well-approximated by binary vectors in the sense that dot products are approx-
imately preserved. This theory serves as a foundation for understanding not only BNNs but a variety 
of methods that seek to compress traditional NNs using the well-known compression techniques 
mentioned in [29, 30]. A promising technique to enhance BNNs representation capacity introduced 
in [31] where authors refined the kernel and features using generative adversarial learning like KR-
GAL and FR-GAL. [32] empirically proves that quantizing the weights can improve generalization, 
where authors show that eigenvalue of neural tangent kernel of the proposed network decays approx-
imately exponentially.   

Application of BNNs in Object Detection. Authors of [33] noticed that binarization leads to 
poor representation capabilities of features. To avoid that [34] proposes a method called “Block 
Scaling Factor XNOR” (BSF-XNOR). This method is built on the XNOR binarization algorithm 
[35] but adds to it better representation capabilities using a scaling factor for each block under a used 
filter and increasing in operation parallelization without increasing the calculation amount. The scal-
ing factor is calculated using a specific mathematical expression introduced by [34]. The suggested 
algorithm was applied on unmanned aerial vehicles (drones). BSF-XNOR beats most of the well 
know algorithms for object detection in overall performance like XNOR, YOLOv3-tiny, Non-bin, 
XYOLO [36]. 

To simplify the search for appropriate architecture of BNN, [37] proposes an algorithm 
called BNAS which produces high compact models for detection tasks. [38] presents a method 
for object detection in infrared images using BNNs. The authors demonstrate that the perfor-
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mance of BNNs is very close to that of 32-bit floating-point networks on the IR dataset and 
present a system architecture (using external DRAM an internal SRAM) designed specifically 
for computation using binary representation. [38] shows that BNNs can achieve high recogni-
tion accuracy while reducing memory and energy requirements, making them suitable for use in 
embedded platforms and mobile devices. [39] proposes a new approach for object detection us-
ing a fast unified binary network. The proposed method is based on the X-NOR network and 
uses binary-precision convolution. The network also uses convolution kernels of different sizes 
to predict classes and bounding boxes of multi-scale objects directly which makes the approach 
easy to implement in embedded computing systems and achieves faster object detection with 
acceptable loss of accuracy. 

A modified binarized convolutional neural network proposed in [40] can reduce power con-
sumption without any speed loss and improve system performance while keeping low power dissipa-
tion. The article also describes the limitations of reducing power consumption through software and 
how optimized SoC hardware structure can extend the limitation of software methods, for example, 
by the use AXI interfaces to accelerate the process and optimize data transferring. 

Authors in [41] propose a low bit-width weight optimization approach to train BNN called 
(BDNN). This method uses a greedy layer-wise technique to train the detection network instead of 
binarizing the whole network once at a time, which boosts performance instead of training the entire 
network at the same time. 

To optimize the detection process for time, [42] introduces a point-process filter (PPF) that fil-
ters the input video stream to remove the noise. After that, the filtered images are passed to an effi-
ciently implemented BNN on FPGA. The implementation shows a reduction of 86% in latency com-
pared to the full precision NN. 

[43] proposes a binarized neural network learning method called BiDet for efficient object de-
tection. This method eliminates the redundant information using the principle of information bottle-
neck which gives us a fully utilization of the representational capacity of the networks and enforces 
the posteriors to be concentrated on informative prediction for false positive elimination, through 
which the detection precision is significantly enhanced. 

To maintain a performance so close to that of real value NN, [44] presents a strategy 
called layer-wise searching which generates 1-bit detectors that minimize the angular error in a 
student-teacher framework. To increase the capacity of the detectors, authors introduce angular 
and amplitude loss functions. Those functions search learns the scale factor that minimizes the 
amplitude error and finds the optimal binary weights that minimize angular loss. On the other 
hand, authors in [45] try to increase features representation capacities by using an adaptive am-
plitude method that reformulates the binary convolution. A good comparison of the performance 
of different NNs in detection tasks was carried out by [46], where they compared previously 
trained CNN, QNN and BNN. The detection of small objects manipulated by hand was studied 
in [47] for surveillance purposes, where the authors implemented robust and reliable model for 
detection based on binarization techniques. A very actual detection task was studied by [48] 
which used BNN (DAD-Net) to detect drivable areas (segmentation) for autonomous driving 
which saves energy and computing power. The proposed network uses binary weights and acti-
vations in both encoder and encoder parts and in the bottleneck. To keep passengers safe in 
public transportation and alert for anomaly state, [49] implemented a BNN for faster emotion 
recognition from facial expressions. [50] performs semantic segmentation through GroupNet 
algorithm. GroupNet divides the network into sub-groups and performs approximation for each 
sub-group using combinations of binary bases. Table illustrates the BNN results of the object 
detection task on the benchmark datasets PASCAL VOC. 
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Summary of BNNs performance on object detection for PASCAL VOC dataset 
Neural Network 

Approach 
Network Architecture 

Binarization method / Real-
valued 

Trained Dataset mAP% 

Customized 
VGG16 

Real-valued VOC2007 68.9 
BNN VOC2007 47.3 

Alexnet 
Real-valued VOC2007 66.0 

BNN VOC2007 46.4 

Faster RCNN 

VGG16 BDNN VOC2012 62.6 

ResNet-18 
Real-valued VOC2007 67.8 
Bi-Real Net VOC2007 51.0 

ResNet-18 
Real-valued VOC2007+2012 73.2 
Bi-Real Net VOC2007+2012 60.6 

ResNet-34 
Real-valued VOC2007+2012 75.6 
XNOR-Net VOC2007+2012 54.7 

ResNet-18 

Real-valued VOC2007+2012 74.5 
BiDet 

BiDet(SC) 
XNOR-Net 
Bi-Real Net 

VOC2007+2012 50.0 
59.5 
48.4 
58.2 

ResNet-18 
Real-valued VOC2007+2012 76.4 
Bi-Real Net 

BiDet 
VOC2007+2012 60.9 

62.7 

ResNet-34 
Real-valued VOC2007+2012 77.8 
Bi-Real Net 

BiDet 
VOC2007+2012 63.1 

65.8 

ResNet-50 
Real-valued VOC2007+2012 79.5 
Bi-Real Net VOC2007+2012 65.7 

ResNet-18 
Real-valued VOC2007 74.5 
DA-BNN VOC2007 63.5 

YOLOv2 DarkNet XNOR-Net VOC2007 79.6 

SSD VGG16 
BDNN VOC2007+2012 63.3 

XNOR-Net 60.71 

SSD300 

VGG16 

Real-valued VOC2007+2012 72.4 
BiDet 

BiDet(SC) 
XNOR-Net 
Bi-Real Net 

 
VOC2007+2012 

52.4 
66.0 
50.2 
63.8 

MobileNetV1 
Real-valued VOC2007+2012 68.0 

BiDet 
XNOR-Net 

VOC2007+2012 51.2 
48.9 

VGG16 
Real-valued VOC2007+2012 74.3 
Bi-Real Net 

BiDet 
VOC2007+2012 63.8 

66.0 

Conclusion. Although BNNs have some aspects to be used in, a few challenges and con-
straints remain an open issue for research. For a given task, what is the architecture of BNN we 
should use? In general, all the layers (except the input and output layers) of a BNN are binarized 
CNN layers, and this is a primary source for information loss. The deeper the BNN the more we lose 
information because the performance drop is accumulated from the previous layers. In this paper, we 
conducted a review on the key optimization techniques for BNN (training strategies, binarization 
methods, increasing representation capacity) and a review of the application and real-life tasks that 
used BNNs to handle object detections. 
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