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Аннотация. Рассматривается метод диагностики технического состояния электрических изоляторов, установлен-
ных на воздушных линиях электропередачи. Целью исследования является разработка инструментов для оценки 
работоспособности электрооборудования, что позволит повысить надежность электроснабжения и безопасность 
эксплуатации воздушных линий электропередачи. Предложен подход к диагностике изоляторов, основанный на 
математическом моделировании их электрических и физических характеристик. Использование таких моделей 
позволяет прогнозировать изменение параметров изоляции под воздействием различных факторов, включая кли-
матические условия, старение материалов и эксплуатационные нагрузки. Результаты демонстрируют перспективы 
применения математического моделирования в задачах диагностики и профилактического обслуживания обору-
дования высоковольтных линий. Математические модели учитывают механические и электрические воздействия 
на изоляторы, такие как механические нагрузки, температура, влажность и уровень загрязнения. В частности, ис-
пользуются уравнения состояния материала, критерии разрушения и модели накопления повреждений для оценки 
текущего состояния и прогнозирования будущих отказов. Применение методов машинного обучения позволяет 
автоматизировать процесс классификации состояния оборудования и прогнозировать вероятность его отказа. 
Практическое применение этих подходов может существенно снизить риски аварийных ситуаций и оптимизировать 
техническое обслуживание оборудования.
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Abstract. A method for diagnosing the technical condition of electrical insulators installed on overhead power transmission 
lines is considered. The purpose of the study is to develop tools for assessing the operability of electrical equipment, 
which will improve the reliability of power supply and the safety of operation of overhead power transmission lines. An 
approach to the diagnosis of insulators based on mathematical modeling of their electrical and physical characteristics 
is proposed. The use of such models makes it possible to predict changes in insulation parameters under the influence 
of various factors, including climatic conditions, aging of materials and operational loads. The results demonstrate the 
prospects of using mathematical modeling in the tasks of diagnostics and preventive maintenance of high-voltage line 
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equipment. The mathematical models take into account the mechanical and electrical effects on insulators, such as 
mechanical loads, temperature, humidity, and pollution levels. In particular, material state equations, fracture criteria, and 
damage accumulation models are used to assess the current condition and predict future failures. The use of machine 
learning methods makes it possible to automate the process of classifying the condition of equipment and predict the 
probability of its failure. The practical application of these approaches can significantly reduce the risks of emergencies 
and optimize equipment maintenance.

Keywords: mathematical model of electrical equipment, diagnostics of technical condition, mechanical model of 
destruction
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Введение. Изоляторы обеспечивают электрическое обособление проводов от опорных 
конструкций, предотвращая короткие замыкания и потери энергии. Однако эксплуатацион-
ные нагрузки, воздействие климатических факторов, старение материалов и механические 
повреждения могут приводить к деградации изоляторов, что создает угрозу стабильности ра-
боты энергосистемы. Современные технологии позволяют собирать и анализировать данные о 
состоянии этих элементов, что открывает новые возможности для предиктивной аналитики и 
проактивного обслуживания [1].

Методы и материалы. Определяются источники измеряемых параметров и величин 
для последующей обработки данных, как правило, это сенсоры и датчики для мониторинга 
параметров температуры, влажности, механических нагрузок, уровня загрязнения. Также ис-
пользуются аэрофотосъемка и БПЛА [2] для периодического визуального контроля состояния 
оборудования [3].

После сбора данных методами фильтрации и нормализации выполняется предобработ-
ка. Используя фильтр Калмана или скользящего среднего, можно удалять шумы и случайные 
флуктуации в данных. Для улучшения качества обучения моделей необходимо нормализовать 
данные — привести их к единому масштабу [4].

Модели машинного обучения можно разделить на три типа: регрессионные, модели 
классификации и глубокое обучение. Использование линейной регрессии или метода опорных 
векторов (support vector machine, SVM) позволяет прогнозировать значения напряжений и де-
формаций. Пример линейной регрессии можно представить как:

	 σ(x, t) = β0 + β1x + β2t.

Алгоритмы классификации (например, случайный лес, градиентный бустинг) позволяют 
определять вероятности разрушения. Пример использования алгоритма случайного леса для 
классификации технического состояния изоляторов воздушных линий электропередачи пред-
ставлен на рисунке.

Глубокое обучение подразумевает использование сверточных нейронных сетей обработ-
ки изображений с БПЛА для анализа визуальных данных [5]. После этого применяются уже 
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математические модели для оценки текущего состояния. Для расчета текущих напряжений и 
степени повреждений используются уравнения состояния материала и критериев разрушения. 
Прогнозируется будущее состояние для прогнозирования времени до возможного отказа мето-
дом накопления повреждений. Данные комбинируются из различных моделей (механических, 
электрических, коррозионных) для получения комплексной оценки состояния оборудования [6].

Математическая модель процессов разрушения. Для описания процессов разрушения 
керамических изоляторов можно использовать комбинацию механических и электрических мо-
делей. Эти модели учитывают влияние различных факторов, таких как механические нагрузки, 
температура, влажность и уровень загрязнения.

Пусть σ(x, t) — напряженное состояние изолятора в точке x в момент времени t. Процесс 
разрушения можно описать с помощью критерия максимальных напряжений или энергии раз-
рушения.

Уравнение состояния материала определяется как: 

	 σ(x, t) = Eτ(x, t),

где E — модуль упругости материала, τ(x, t) — деформация в точке x в момент времени t.
Пусть σult — предельное напряжение материала, тогда разрушение происходит при:

	 σ(x, t) ≥ σult.

Используя модель Качанова–Работова, получим описание накопления повреждений:

	 D(t) = 1 – exp�– ∫
t

0
 k(σ(x, tʹ))dt�,

где D(t) — степень повреждения в момент времени t, k(σ) — функция скорости повреждения, 
зависящая от текущего уровня напряжений.

С целью учета электрических воздействий можно использовать уравнение Пуассона для 
электростатического потенциала φ(x, t):

	 (ε φ(x, t) = –ρ(x, t),

где ε — диэлектрическая проницаемость материала, ρ(x, t) — объемная плотность заряда.
Процесс разрушения изолятора под действием электрического поля можно описать через 

зависимость его прочности от приложенного напряжения:

	 σult(V) = σult,0�1 – α
Vkr

V
�,

где V — приложенное напряжение, Vkr — критическое напряжение, при котором происходит 
разрушение, α — коэффициент, характеризующий чувствительность материала к электриче-
скому полю.

Для грозотросов можно использовать аналогичные подходы, но с учетом дополнитель-
ных факторов, таких как коррозия и удар молнии. Пусть C(t) — степень коррозии грозотроса в 
момент времени t. Скорость коррозии зависит от влажности H и концентрации электролита c:

	
dt

dC(t)
 = kcHc,

где kc — коэффициент коррозии.
Удар молнии можно моделировать как импульсную нагрузку на грозотрос:

	 I(t) = I0δ(t – t0),

где I0 — амплитуда тока, t0 — время удара молнии, а δ(t) — дельта-функция Дирака.
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Общую модель разрушения грозотроса можно записать как:

	 σult(t) = σult,0(1 – C(t))exp�–β ∫
t

0
 I(tʹ)dtʹ�,

где β — коэффициент, характеризующий влияние ударов молнии на прочность грозотроса.
Заключение. Использование предложенной модели позволяет более точно описывать 

процессы разрушения керамических изоляторов и других элементов системы воздушных линий 
электропередачи [7]. Это, в свою очередь, помогает разрабатывать более эффективные алгорит-
мы предиктивной аналитики для мониторинга состояния оборудования на воздушных линиях 
электропередачи. Дальнейшие исследования могут быть направлены на уточнение параметров 
моделей и их адаптацию к конкретным условиям эксплуатации [8].
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