УДК 519.8

А. Н. Кириллов

ДИНАМИЧЕСКИЕ СИСТЕМЫ С ПЕРЕМЕННОЙ СТРУКТУРОЙ И РАЗМЕРНОСТЬЮ

Предлагается подход к математическому моделированию сложных динамических систем с переменной структурой и размерностью. Модель задается системами обыкновенных дифференциальных уравнений, количество и вид которых зависят от поведения специальных переменных. Приведен пример использования предложенного подхода в задаче стабилизации системы твердых тел.

Ключевые слова: динамическая система, математическая модель, изменение структуры, переменная размерность, декомпозиция, управление.

Введение. Решение задачи управления техническими системами и технологическими процессами связано с построением сложных математических моделей, что обусловлено, в частности, многочисленными взаимосвязями различных подсистем. Необходимость учета этих взаимосвязей приводит к созданию динамических систем, аналитическое исследование которых весьма затруднительно. К системам, в которых важную роль играют изменяющиеся во времени взаимосвязи образующих их подсистем, можно отнести крупные производственные комплексы, движущиеся объекты с переменным количеством компонентов, роботыманипуляторы, динамические модели теории метапопуляций. Эти и многие другие аналогичные системы имеют общие свойства: в процессе функционирования их структура изменяется таким образом, что подсистемы, из которых они состоят, могут на различных интервалах времени находиться в пассивном или активном режиме. В настоящей статье для моделирования таких процессов предлагается использовать динамические системы, размерность и структура которых, в зависимости от состояния, может изменяться с течением времени, т.е. происходит динамическая декомпозиция сложной системы [1]. Отметим, что вопросы моделирования сложных систем со структурными изменениями исследовались в работах [2-7]. Настоящая статья развивает это направление.

Пусть некоторая сложная система S состоит из подсистем S_i , i=1,...,n, которые в процессе функционирования могут отключаться от нее или, наоборот, подключаться к ней в зависимости от состояния сложной системы. Тем самым структура и, следовательно, размерность S изменяются. Перейдем к формальному описанию. Предположим, что система S

представляет собой совокупность взаимосвязанных подсистем S_i , i=1,...,n, причем не все S_i могут входить в состав S одновременно. Итак, $S=\{S_{k1},...,S_{kj},...,S_{km}\},\ kj\in\{1,...,n\},$ $j=1,...,m,\ m\leq n$, при этом полагаем, что $ki\equiv k_i$, ki< k(i+1).

Определение. Вектором структуры $\gamma \in R^n$ системы S называется вектор $\gamma^T = (\gamma_1,...,\gamma_n)$, такой что $\gamma_i = 1$, если $S_i \in S$, и $\gamma_i = 0$, если $S_i \notin S$.

Вектор \mathbf{y} будем также называть структурой системы S . Введем вектор $\mathbf{y}(t) \in R^n$, $\mathbf{y}^T(t) = (y_1(t),...,y_n(t))$, такой что $\gamma_i = 1$, если $y_i(t) > \tilde{y}_i$, и $\gamma_i = 0$, если $y_i(t) < \tilde{y}_i$. Здесь \tilde{y}_i — заданные постоянные (пороговые значения). Если в некоторый момент времени \tilde{t} справедливо равенство $y_i(\tilde{t}) = \tilde{y}_i$, то происходит изменение структуры системы S, а именно: если при $t \in (\tilde{t} - \delta, \tilde{t})$ подсистема S_i входит в состав S, $S_i \subset S$, т.е. $y_i(t) > \tilde{y}_i$, то происходит отключение S_i от S. Если при $t \in (\tilde{t} - \delta, \tilde{t})$ подсистема S_i не входит в состав S, $S_i \subset S$, т.е. $y_i(t) < \tilde{y}_i$, то происходит подключение S_i к S. Здесь $\delta > 0$ — заданная постоянная.

3 а м е ч а н и е . Вектор y(t) можно назвать многомерным временем эволюции системы в отличие от текущего времени t . Именно изменение компонентов $y_i(t)$ приводит к изменению структуры системы S.

Перейдем к описанию динамики системы S. При этом рассмотрим два варианта: разрывное (скачкообразное) и непрерывное изменения структуры.

Разрывное изменение структуры. Отключение S_{kj} . Пусть в некоторый момент времени t в состав S входят подсистемы S_{ki} : $S = \{S_{k1}, ..., S_{km}\}$, т.е. $y_{ki}(t) > \tilde{y}_{ki}$. Введем векторы состояний $\mathbf{X}_{ki} \in R^{(ki)}$ подсистем S_{ki} , где(ki) — размерность вектора \mathbf{X}_{ki} . Тогда полагаем, что динамика системы S в момент времени t описывается системой дифференциальных уравнений

$$\dot{\mathbf{X}}_{ki} = f_{k1,...,km}^{ki}(\mathbf{X}_{k1},...,\mathbf{X}_{ki},...,\mathbf{X}_{km}), \quad i = 1,...,m;
\dot{y}_{l} = g_{k1,...,km}^{l}(\mathbf{X}_{k1},...,\mathbf{X}_{ki},...,\mathbf{X}_{km}), \quad l = 1,...,n,$$
(1)

где $f_{k1,\dots,km}^{ki}: R^{(k1)+\dots+(km)} \to R^{(ki)}; \ g_{k1,\dots,km}^l: R^{(k1)+\dots+(km)} \to R$, причем правые части обеспечивают существование и единственность решения системы (1).

Пусть в некоторый первый момент времени $t = t_{kj}^-$ переменная $y_{kj}(t)$ принимает значение \tilde{y}_{kj} : $y_{kj}(t_{kj}^-) = \tilde{y}_{kj}$. Введем отключающее подсистему S_{kj} непрерывное отображение ϕ_{kj}^- : $R^{(k1)+...+(km)+n+1} \to R^{(k1)+...+(km)+n+1}$:

$$\begin{aligned} & \boldsymbol{\varphi}_{kj}^{-}(\mathbf{X}_{k1}(t_{kj}^{-}),...,\mathbf{X}_{kj}(t_{kj}^{-}),...,\mathbf{X}_{km}(t_{kj}^{-}),y_{1}(t_{kj}^{-}),...,\tilde{y}_{kj},...,y_{n}(t_{kj}^{-}),t_{kj}^{-}) = \\ & = \left(\mathbf{X}_{k1}^{(-kj)},...,\mathbf{0}^{(kj)},...,\mathbf{X}_{km}^{(-kj)},y_{1}^{(-kj)},...,\tilde{y}_{kj} - \delta_{kj}^{-},...,y_{n}^{(-kj)},\tilde{t}_{kj}^{-}\right), \end{aligned}$$

где $\mathbf{0}^{(kj)}$ — нулевой вектор, $\mathbf{0}^{(kj)} \in R^{(kj)}$, причем $\mathbf{0}^{(kj)}$ находится на j-м месте; постоянная $\delta_{kj}^- > 0$; постоянная $\tilde{y}_{kj}^- - \delta_{kj}^-$ находится на (m+j)-м месте; $t_{kj}^- \leq \tilde{t}_{kj}^-$ — заданный момент времени; $\mathbf{X}_{ki}^{(-kj)}$, $y_l^{(-kj)}$ — заданные векторы и постоянные, $l=1,...,n,\ l\neq kj$, i=1,...,m, $i\neq j,\ \mathbf{X}_{ki}^{(-kj)} \in R^{ki}$. При этом полагаем

$$(y_l(t_{kj}^-) - \tilde{y}_l)(y_l^{(-kj)} - \tilde{y}_l) > 0, \ l = 1,...,n, \ l \neq kj,$$

т.е. положение постоянных $y_l(t_{kj}^-)$ по отношению к пороговым значениям \widetilde{y}_l после скачка не изменяется. Тогда отображение перехода ϕ_{kj}^- , понижающее размерность системы S, не влияет мгновенно на отключение или подключение других подсистем S_{ki} .

Далее, при $t \geq \tilde{t}_{kj}^-$ динамика системы S задается уравнениями

$$\dot{\mathbf{X}}_{ki} = f_{k1,...,kj,...,km}^{ki}(\mathbf{X}_{k1},...,\hat{\mathbf{X}}_{ki},...,\mathbf{X}_{km}), \quad i = 1,...,m, \quad i \neq j;$$

$$\dot{\mathbf{X}}_{kj} = 0^{(kj)};$$

$$\dot{y}_{l} = g_{k1,...,kj,...,km}^{l}(\mathbf{X}_{k1},...,\hat{\mathbf{X}}_{kj},...,\mathbf{X}_{km}), \quad l = 1,...,n,$$
(2)

с начальными условиями

$$\mathbf{X}_{ki}(\tilde{t}_{kji}^{-}) = \mathbf{X}_{ki}^{(-kj)}, \quad i = 1, ..., m, \quad i \neq j; \quad \mathbf{X}_{kj}(\tilde{t}_{kj}^{-}) = \mathbf{0}^{(kj)};$$
(3)

$$y_l(\tilde{t}_{kj}^-) = y_l^{(-kj)}, \quad l = 1, ..., n, \quad l \neq kj, \quad y_{kj}(\tilde{t}_{kj}^-) = \tilde{y}_{kj} - \delta_{kj}^-.$$
 (4)

Здесь символом $\hat{\mathbf{X}}_{ki}$ обозначен отсутствующий вектор. В силу второго уравнения системы (2) и начального условия (3) $\mathbf{X}_{kj}(t) \equiv \mathbf{0}^{(kj)}$ при $t \geq \tilde{t}_{kj}^-$. Это означает, что переменной $\mathbf{X}_{kj}(t)$ можно пренебречь. Тогда будем полагать, что при $t \geq \tilde{t}_{kj}^-$ динамика системы S задается уравнениями

$$\dot{\mathbf{X}}_{ki} = f_{k1,\dots,kj-1,kj+1,\dots,km}^{ki}(\mathbf{X}_{k1},\dots,\mathbf{X}_{kj-1},\mathbf{X}_{kj+1},\dots,\mathbf{X}_{km}), \quad i = 1,\dots,m, \quad i \neq j;
\dot{y}_{l} = g_{k1,\dots,kj-1,kj+1,\dots,km}^{l}(\mathbf{X}_{k1},\dots,\mathbf{X}_{kj-1},\mathbf{X}_{kj+1},\dots,\mathbf{X}_{km}), \quad l = 1,\dots,n.$$
(5)

Таким образом, произошло отключение подсистемы S_{kj} . В результате динамика системы S описывается уравнениями (5) с начальными условиями (3), (4).

Замечание. Следует отметить, что отображение ϕ_{kj}^- позволяет системе S совершить временной скачок длительностью $\tilde{t}_{kj}^- - t_{kj} \ge 0$.

Подключение S_{kj} . Пусть динамика системы S задается уравнениями (5). Предположим, что в некоторый момент времени $t=t_{kj}^+$ переменная $y_{kj}(t)$ принимает значение $\tilde{y}_{kj}:y_{kj}(t_{kj}^+)=\tilde{y}_{kj}$. Отсутствие в составе S подсистемы S_{kj} при $t< t_{kj}^+$ означает, что при этом выполняется условие $y_{kj}(t)<\tilde{y}_{kj}$. Введем подключающие подсистему S_{kj} отображения $\phi_{kj}^+:R^{(k1)+...+(kj-1)+(kj+1)+...+(km)+n+1}\to R^{(k1)+...+(km)+n+1}$, так что

$$\begin{split} & \phi_{kj}^{+}(\mathbf{X}_{k1}(t_{kj}^{+}),...,\mathbf{X}_{k(j-1)}(t_{kj}^{+}),\mathbf{X}_{k(j+1)}(t_{kj}^{+}),...,\mathbf{X}_{km}(t_{kj}^{+}),y_{1}(t_{kj}^{+}),...,y_{n}(t_{kj}^{+}),t_{kj}^{+}) = \\ & = \left(\mathbf{X}_{k1}^{(+kj)},...,\mathbf{X}_{k(j-1)}^{(+kj)},\mathbf{X}_{kj}^{(+kj)},\mathbf{X}_{k(j+1)}^{(+kj)},...,X_{km}^{(+kj)},y_{1}^{(+kj)},...,y_{k(j-1)}^{(+kj)},\tilde{y}_{kj}^{+} + \delta_{kj}^{+},y_{k(j+1)}^{(+kj)},...,y_{n}^{(+kj)},\tilde{t}_{kj}^{+}\right), \end{split}$$

где δ_{kj}^+ , \tilde{t}_{kj}^+ , $y_i^{(+kj)}$ — заданные постоянные, $\delta_{kj}^+ > 0$, $\tilde{t}_{kj}^+ \ge t_{kj}^+$; $\mathbf{X}_{ki}^{(+kj)}$ — заданные векторы, $\mathbf{X}_{ki}^{(+kj)} \in R^{(ki)}$, i=1,...,m; при этом полагаем, что $(y_l(t_{kj}^+) - \tilde{y}_l) \Big(y_l^{(+kj)} - \tilde{y}_l \Big) > 0$, l=1,...,n,

 $l \neq kj$, т.е. положение постоянных $y_l(t_{kj}^+)$ не изменяется по отношению к пороговым значениям \tilde{y}_l после скачка, иными словами, отображение ϕ_{kj}^+ , повышающее размерность системы, не влияет мгновенно на отключение или подключение других подсистем S_{ki} .

Далее, при $t \geq \tilde{t}_{k_j}^+$ динамика системы S задается уравнениями (1) с начальными условиями $\mathbf{X}_{ki}(\tilde{t}_{kj}^+) = \mathbf{X}_{ki}^{(+kj)}, \ y_l(\tilde{t}_{kj}^+) = y_l^{(+kj)}, \ y_{kj}(\tilde{t}_{kj}^+) = \tilde{y}_{kj} + \delta_{kj}^+, \ l=1,...,n, \ l \neq kj, \ i=1,...,m.$

Непрерывное изменение структуры. Отключение S_{kj} . Предположим, что при $t < t_{kj}^-$ динамика системы S задается уравнениями (1). Пусть $y_{ki}(t_{ki}^-) = \tilde{y}_{ki}$.

Также полагаем, что $g_{k1,\dots,km}^{kj}(\mathbf{X}_{k1}(t_{kj}^-),\dots,\mathbf{X}_{km}(t_{kj}^-))<0$. Пусть при $t\geq t_{kj}^-$, $\mathbf{X}_{kj}(t)\neq 0$ динамика системы S задается уравнениями

$$\dot{\mathbf{X}}_{ki} = f_{k1,...,km}^{-ki}(\mathbf{X}_{k1},...,\mathbf{X}_{ki},...,\mathbf{X}_{km}), \quad i = 1,...,m;
\dot{y}_{l} = g_{k1,...,km}^{-l}(\mathbf{X}_{k1},...,\mathbf{X}_{kj},...,\mathbf{X}_{km}), \quad l = 1,...,n,$$
(6)

где функции $f_{k1,\dots,km}^{-ki}$, $g_{k1,\dots,km}^{-l}$ обеспечивают существование и единственность решений системы (6). При этом полагаем, что в области $\{\|\mathbf{X}_{kj}\| \leq \|\mathbf{X}_{kj}(t_{kj}^-)\|\}$

$$f_{k_1,...,k_m}^{-kj}(\mathbf{X}_{k_1},...,\mathbf{X}_{k_j},...,\mathbf{X}_{k_m}) < -\alpha_{k_j}^- < 0, \tag{7}$$

где α_{kj}^- — заданная постоянная, кроме того,

$$g_{k1}^{-kj}$$
 $_{km}(\mathbf{X}_{k1}(t_{ki}^{-}),...,\mathbf{X}_{ki}(t_{ki}^{-}),...,\mathbf{X}_{km}(t_{ki}^{-})) < 0.$

Далее, наличие условия (7) позволяет определить момент времени \hat{t}_{kj} , такой что $\mathbf{X}_{kj}(\hat{t}_{kj})=0$. При этом возможны два случая: 1) траектория системы (6), находясь в области, для которой $y_{kj}<\tilde{y}_{kj}$, попадает на множество $\mathbf{X}_{kj}=0$; 2) траектория системы (6) сначала при $t=\tilde{t}_{kj}<\hat{t}_{kj}$ попадает на плоскость $y_{kj}=\tilde{y}_{kj}$.

Рассмотрим оба случая:

- 1) с момента попадания траектории на множество $\mathbf{X}_{kj} = 0$ динамика системы S задается уравнениями (5); таким образом, происходит отключение подсистемы S_{kj} ;
- 2) после попадания траектории на плоскость $y_{kj} = \tilde{y}_{kj}$ из области $y_{kj} < \tilde{y}_{kj}$ полагаем, что динамика системы S задается уравнениями

$$\dot{\mathbf{X}}_{ki} = f_{k1,...,km}^{+ki}(\mathbf{X}_{k1},...,\mathbf{X}_{ki},...,\mathbf{X}_{km}), \quad i = 1,...,m;
\dot{y}_{l} = g_{k1,...,km}^{+l}(\mathbf{X}_{k1},...,\mathbf{X}_{kj},...,\mathbf{X}_{km}), \quad l = 1,...,n,$$
(8)

где функции $f_{k1,\dots,km}^{+kj}$, $g_{k1,\dots,km}^{+l}$ обеспечивают существование и единственность решения.

Пусть

$$g_{k_{1,...,km}}^{+k_{j}}(\mathbf{X}_{k1}(\tilde{t}_{kj}),...,\mathbf{X}_{kj}(\tilde{t}_{kj}),...,\mathbf{X}_{km}(\tilde{t}_{kj})) \geq 0,$$

$$g_{k_{1,...,km}}^{-k_{j}}(\mathbf{X}_{k1}(\tilde{t}_{kj}),...,\mathbf{X}_{kj}(\tilde{t}_{kj}),...,\mathbf{X}_{km}(\tilde{t}_{kj})) > 0.$$
(9)

При этом функции $g_{k1,\dots,km}^{+kj}$ обладают свойством положительного скачка: гарантируют попадание траектории на плоскость $y_{kj} = \tilde{y}_{kj} + \delta_{kj}^+$, после чего динамика системы S задается уравнениями (1). Это означает, что отключения подсистемы S_{kj} не произошло ("ложная тревога").

Подключение S_{kj} . Пусть динамика S задается системой (5), и в некоторый момент времени t_{kj}^+ имеем $y_{kj}(t_{kj}^+) = \tilde{y}_{kj}$. При этом полагаем

$$g_{k_1,...,k(j-1),k(j+1),...,k_m}^{k_j}(\mathbf{X}_{k_1}(t_{k_j}^+),...,\mathbf{X}_{k(j-1)}(t_{k_j}^+),\mathbf{X}_{k(j+1)}(t_{k_j}^+),...,\mathbf{X}_{k_m}(t_{k_j}^+)) > 0.$$

Далее, при $t \ge t_{kj}^+$ динамика S задается системой (8), для которой, помимо условия (9) и свойства положительного скачка для $g_{k1,\dots,km}^{+kj}$, до момента попадания траектории на плоскость $y_{kj} = \tilde{y}_{kj} + \delta_{kj}^+$ выполняется условие

$$|f_{k1,...,km}^{+kj}(\mathbf{X}_{k1},...,\mathbf{X}_{kj},...,\mathbf{X}_{km})| > \alpha_{kj}^{+} > 0,$$

где α_{ki}^+ — заданная постоянная.

В результате динамика S задается системой (1). Происходит подключение подсистемы S_{kj} .

Определение. Будем называть построенную выше математическую модель системой с переменной размерностью (СПР) с разрывным или непрерывным изменением структуры.

Траектория СПР состоит из участков, соответствующих временным интервалам, на которых структура системы не изменяется. При этом каждый участок траектории порождает последовательность структур $\gamma^{(k)}$, т.е. структурную траекторию. Задача стабилизации заданной структуры в случае линейной системы решается в работе [8].

Пример. Рассмотрим систему m связанных между собой твердых тел P_k , уравнения движения которых имеют вид: $f_k(\omega_k,\dot{\omega}_k,v_k,\dot{v}_k,u_k) = 0$, где ω_k,v_k — абсолютные угловая скорость k-го тела и скорость относительно неподвижной точки O_k ; u_k — управляющий момент сил, приложенных к k-му телу. Пусть в каждом теле выделен орт \mathbf{r}_k , а в пространстве задана совокупность ортов \mathbf{d}_k . Задача состоит в стабилизации системы тел, т.е. в построении управлений u_k , при которых $\mathbf{r}_k \to \mathbf{d}_k$ при $t \to \infty$. Введем дополнительное непрямое управление w, такое что $\dot{w} = M - (\mid u_1 \mid + ... + \mid u_m \mid)$, где M = M(t) — пороговая кусочно-постоянная функция, $|u_k|$ — модуль вектора u_k . Пусть задана бесконечная совокупность постоянных $w_i: w_i < w_{i+1}, \ i=1,2,\dots$ Будем полагать, что при $w \in (w_k,w_{k+1})$ в состав системы входят тела $P_1,...,P_k$. При достижении переменной значения w_k происходит отключение тела P_k , а при достижении значения w_{k+1} — подключение тела P_{k+1} . Переменная w характеризует запас энергии, имеющейся в распоряжении управляющего органа системы и затрачиваемой на стабилизацию. Если этот запас достаточно велик, то подключается дополнительный объект, в противном случае отключается один из объектов. Таким образом, построена саморазвивающаяся механическая система с двухуровневым управлением: посредством управления u_k решается задача стабилизации, а посредством параметра w изменяется структура системы в зависимости от наличия энергии, значение которой может регулироваться изменением функции M, зависящей, в свою очередь, от параметров, характеризующих движение системы.

Предложенный подход, который можно назвать методом динамической декомпозиции, позволяет аналитически исследовать сложные системы с переменной структурой и размерностью, используя на различных стадиях их функционирования более простые, по сравнению с исходной, модели.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Кириллов А. Н.* Динамическая декомпозиция и устойчивость структур // Математический анализ и его приложения: Сб. / Под ред. В. В. Мазалова. Чита: Изд-во Читинск. пед. ин-та, 1996. Вып. 2. С. 20—24.
- 2. Шильяк Д. Децентрализованное управление сложными системами. М.: Мир, 1994. 576 с.
- 3. *Груйич Л. Т.*, *Мартынюк А. А.*, *Риббенс-Павелла М.* Устойчивость крупномасштабных систем при структурных и сингулярных возмущениях. Киев: Наукова думка, 1984. 473 с.
- 4. *Матросов В. М., Маликов А. И.* Вектор-функции Ляпунова в анализе динамических систем со структурными изменениями // Изв. РАН. Сер. Теория и системы управления. 1998. Вып. 2. С. 47—54.
- 5. Охтилев М. Ю., Соколов Б. В., Юсупов Р. М. Интеллектуальные технологии мониторинга и управление структурной динамикой сложных динамических объектов. М.: Наука, 2006. 410 с.
- 6. *Москвин Б. В., Михайлов Е. П., Павлов А. Н., Соколов Б. В.* Комбинированные модели управления структурной динамикой информационных систем // Изв. вузов. Приборостроение. 2006. Т. 49, № 11. С. 7—12.
- 7. Емельянов С. В. Системы автоматического управления с переменной структурой. М.: Наука, 1967. 336 с.
- 8. *Кириллов А. Н.* Управление многостадийными технологическими процессами // Вестн. СПбГУ. Сер. 10. 2006. Вып. 4. С. 127—131.

Сведения об авторе

Александр Николаевич Кириллов

канд. физ.-мат. наук, доцент; Санкт-Петербургский государственный технологический университет растительных полимеров, кафедра высшей математики; E-mail: krllvaleksandr@rambler.ru

Рекомендована кафедрой высшей математики

Поступила в редакцию 18.09.08 г.