Е. Д. ЛИХОЛЕТОВ, А. В. УШАКОВ, А. Ю. ЦВЕНТАРНЫЙ

АНАЛИЗ ПЕРЕКРЕСТНЫХ СВЯЗЕЙ В ДИНАМИЧЕСКИХ СИСТЕМАХ КЛАССА "ДВУМЕРНЫЙ ВХОД — ВЫХОД" С ОДНОТИПНЫМИ КАНАЛАМИ

Показывается, что работоспособность динамических систем класса ,,двумерный вход — выход" с однотипными каналами и матрицей вращения перекрестных связей сохраняется, если ее аргумент не превышает запаса устойчивости по фазе сепаратного канала системы. Предлагается способ увеличения запаса устойчивости скалярных полиномиальных динамических моделей.

Ключевые слова: динамическая система, перекрестные связи, матрица вращения, запас устойчивости.

Постановка задачи. Рассматривается проблема построения автоматических систем, встраиваемых в измерительные мониторинговые комплексы, использующие принцип следящего преобразования. Такие системы, как правило [1—5], являются двухканальными с однотипным исполнением каналов и характеризуются наличием перекрестных межканальных связей с матрицей типа "матрица вращения" (MB). Наличие перекрестных связей при определенных значениях аргумента µ MB становится причиной потери работоспособности двухканальных систем при устойчивых сепаратных каналах.

В настоящей статье рассматривается проблема установления связи аргумента μ MB с запасом устойчивости $\Delta \phi$ по фазе сепаратных однотипных каналов, степень различия которых оказывается важным фактором.

Определение связи между предельно допустимым значением аргумента матрицы вращения и запасом устойчивости сепаратных каналов. Основной результат.

Рассмотрим динамическую систему (ДС) класса "двумерный вход — выход", структурная схема которой приведена на рис. 1. Здесь $g_i, \varepsilon_i, y_i, i=1, 2, -$ внешнее воздействие, ошибка слежения и выход *i*-го сепаратного канала соответственно; μ — аргумент матрицы межканальных связей (матрицы вращения) $T = \text{col}\{[\cos\mu \sin\mu], [-\sin\mu \cos\mu]\}; v_1, v_2$ переменные, образующие двумерный выход матрицы T; W(s) — передаточная функция прямой цепи *i*-го сепаратного канала спроектированной системы, имеющая представление

$$W(s) = M(s)N^{-1}(s),$$
 (1)

где M(s), N(s) — полиномы с вещественными коэффициентами степенью m и n (m < n) соответственно, образующие при $\mu = 0$ характеристический полином D(s) каждого сепаратного канала в замкнутом виде в силу соотношения D(s) = N(s) + M(s).

Для аналитического описания системы (см. рис. 1) воспользуемся скалярным комплексированным представлением, опирающимся на приведенные в работах [6—9] результаты, модифицированные применительно к представлению матрицы межканальных связей в виде матрицы вращения.

Утверждение 1. Двухканальная система (см. рис. 1) с помощью процедуры комплексирования векторных переменных может быть приведена к скалярному представлению с передаточной функцией $W_{3 \text{KB}}(s)$ прямой цепи вида

$$W_{\rm 3KB}(s) = e^{-j\mu} W(s) \,. \tag{2}$$

Доказательство. Для рассматриваемой схемы справедливы следующие соотношения:

$$\begin{bmatrix} y_1(s) \\ y_2(s) \end{bmatrix} = \begin{bmatrix} W(s) & 0 \\ 0 & W(s) \end{bmatrix} \cdot \begin{bmatrix} \cos \mu & \sin \mu \\ -\sin \mu & \cos \mu \end{bmatrix} \cdot \begin{bmatrix} \varepsilon_1(s) \\ \varepsilon_2(s) \end{bmatrix};$$
(3)

$$y_1(s) = W(s)(\cos\mu)\varepsilon_1(s) + W(s)(\sin\mu)\varepsilon_2(s), \qquad (4)$$

$$y_2(s) = -W(s)(\sin\mu)\varepsilon_1(s) + W(s)(\cos\mu)\varepsilon_2(s).$$
(5)

Введем в рассмотрение комплексированные переменные двухканальной системы:

$$g^* = g_1 + jg_2, \ \varepsilon^* = \varepsilon_1 + j\varepsilon_2, \ y^* = y_1 + jy_2.$$
 (6)

Умножив соотношение (5) на $j = \sqrt{-1}$, в результате получим

$$jy_2(s) = -W(s)(j\sin\mu)\varepsilon_1(s) + W(s)(\cos\mu)(j\varepsilon_2(s)).$$
(7)

Просуммируем выражения (4) и (7) и воспользуемся представлениями (6):

$$y^{*}(s) = y_{1}(s) + jy_{2}(s) = W(s)(\cos\mu)\varepsilon_{1}(s) + W(s)(\sin\mu)\varepsilon_{2}(s) - -W(s)(j\sin\mu)\varepsilon_{1}(s) + W(s)(\cos\mu)(j\varepsilon_{2}(s)) =$$

$$= W(s)(\cos\mu)\varepsilon_{1}(s) - W(s)(j\sin\mu)(j\varepsilon_{2}(s)) - W(s)(j\sin\mu)\varepsilon_{1}(s) + W(s)(\cos\mu)(j\varepsilon_{2}(s)) =$$

$$= W(s)\{\cos\mu - j\sin\mu\}\varepsilon_{1}(s) + W(s)\{\cos\mu - j\sin\mu\}(j\varepsilon_{2}(s)) =$$

$$= W(s)e^{-j\mu}(\varepsilon_{1}(s) + j\varepsilon_{2}(s)) = e^{-j\mu}W(s)\varepsilon^{*}(s) = W_{3KB}(s)\varepsilon^{*}(s). \qquad (8)$$

Доказанное утверждение делает справедливыми положения утверждения 2.

Утверждение 2. Двухканальная система (см. рис. 1) с симметричными каналами, описываемая передаточной функцией (2) относительно комплексированных переменных $\varepsilon^*(s)$, $y^*(s)$, оказывается на границе устойчивости, если аргумент μ матрицы T удовлетворяет условию

$$|\mu| = \Delta \varphi \,, \tag{9}$$

и становится неустойчивой при

$$|\mu| > \Delta \varphi \,. \tag{10}$$

Доказательство. В силу критерия устойчивости Найквиста если выполняется условие (9), то передаточная функция (2) характеризуется нулевым запасом устойчивости, при этом ее частотный годограф проходит через критическую точку (−1; 0), а при выполнении условия (10) он охватывает эту точку.

Примечание. Если аргумент μ оказывается интервальной величиной $[\mu] = [\underline{\mu}, \overline{\mu}]$ согласно работам [9, 10], то в неравенстве (10) следует положить $\mu = \max\{|\mu|, |\overline{\mu}|\}$.

Максимизация запаса устойчивости сепаратных каналов в стандартных полиномиальных динамических моделях (ПДМ) на основе модальных представлений. Решение этой задачи осуществляется в соответствии со следующей логикой. Вычленим из структуры двухканальной системы (см. рис. 1) сепаратный канал с передаточной функцией (1), которую представим в виде

$$W(s) = \frac{M(s)}{D(s) - M(s)} = \frac{1}{s} \frac{v_n}{s^{n-1} + \sum_{i=1}^{n-1} v_i s^{n-1-i}}.$$
(11)

В замкнутом виде уравнение (11) формирует передаточную функцию "вход — выход":

$$\Phi(s) = \frac{y_i(s)}{g_i(s)} = \frac{W(s)}{1 + W(s)} = \frac{M(s)}{D(s)} = \frac{v_n}{s^n + \sum_{i=1}^n v_i s^{n-i}}.$$
(12)

Оценка запаса устойчивости сепаратного канала (12) осуществляется согласно следующей процедуре.

1. Задать ПДМ с характеристическим полиномом D(s), имеющим известные (Баттерворта, Ньютона) распределения мод или их модификации.

2. На основе выбранного в п. 1 представления ПДМ вычислить передаточную функцию разомкнутой системы вида (11).

3. Оценить запас устойчивости по фазе с помощью критерия устойчивости Найквиста, примененного к передаточной функции (11), с использованием процедуры "BODE" в программе MatLab Simulink.

При модификации распределения мод Баттерворта (МРМБ) изменяемым параметром является величина $\psi \in [\pi/2; 0]$ их локализации в левой полуплоскости на единичной окружности в секторе раскрывом 2ψ .

На рис. 2 приведен график зависимости $\Delta \varphi(\psi)$ для МРМБ с первого порядка по пятый ($n=\overline{1,5}$). Для всех порядков ПДМ обнаруживается общая тенденция увеличения запаса устойчивости с уменьшением параметра ψ раскрыва сектора.

В табл. 1 приведены значения $\Delta \varphi$ для ПДМ с биномиальным распределением мод Ньютона (БРМН) при $n=\overline{1,5}$, здесь в аналитическом представлении полинома $D(s, \omega_0) \omega_0$ характеристическая частота БРМН. Сравнение величин $\Delta \varphi$, представленных на рис. 2 и в табл. 1, показывает, что запас устойчивости по фазе с БРМН превышает запасы устойчивости с МРМБ для равных порядков ПДМ при $\psi \neq 0$, а при $\psi = 0$ эти величины совпадают. Таким образом, основное направление дальнейших модификаций распределений мод ПДМ будем связывать с возможностями модифицируемости БРМН.

		Таблица
п	Аналитическое представление полинома $D(s, \omega_0)$	Δφ,°
1	$s + \omega_0$	90
2	$(s+\omega_0)^2$	76,34
3	$(s+\omega_0)^3$	71,25
4	$(s+\omega_0)^4$	68,58
5	$(s+\omega_0)^5$	66,93

В качестве модифицируемой версии распределения мод используется версия биномиального распределения, параметризованная коэффициентом v, записываемая в виде

$$D(\lambda) = D(\lambda, \omega_0, \nu) = \prod_{i=0}^{n-1} (\lambda + \omega_0 (1 + i\nu)), \qquad (13)$$

где *λ* — корень характеристического полинома.

Очевидно, что при v=0 модифицированное биномиальное распределение принимает вид канонического биномиального.

При построении модифицированного БРМН в виде (13) учитывается доминирование одной моды над остальными, в соответствии с которым обеспечивается выбор параметра v. Следует ожидать, что при v≥10 система с характеристическим полиномом вида (13) будет максимально приближена к апериодическому звену 1-го порядка.

На рис. 3 приведен график зависимости $\Delta \varphi(v)$ для ПДМ с первого порядка по пятый ($n=\overline{1,5}$). Для всех порядков ПДМ обнаруживается общая тенденция увеличения запаса устойчивости с увеличением параметра v.

Для обеспечения работоспособности двухканальной динамической системы с перекрестными связями путем повышения запаса устойчивости сепаратных каналов необходимо решить проблему степени свободы назначения параметров ω_0 и v. Для решения этой проблемы будут полезны положения следующего утверждения.

Утверждение 3. Если ПДМ сепаратного канала системы имеет характеристический полином вида (13), то добротность $D_i = \dot{g}_i / \varepsilon_i_{yct}$ (где ε_i_{yct} — установившаяся ошибка в *i*-м сепаратном канале) канала по скорости определяется в соотношением

$$D_{i} = \left\{ \frac{1}{\omega_{0}} + \frac{1}{(1+\nu)\omega_{0}} + \frac{1}{(1+2\nu)\omega_{0}} + \dots + \frac{1}{(1+(n-1)\nu)\omega_{0}} \right\}^{-1}.$$
 (14)

_1

Доказательство строится на использовании аналитического представления добротности по скорости сепаратного канала на основе выражения (11) в виде $D_i = v_n (\omega_0) / v_{n-1} (\omega_0)$. Если с помощью соотношения (13) сформировать вид коэффициентов $v_{n-1}(\omega_0)$ и $v_n(\omega_0)$, то их отношение приводит к уравнению (14).

Построение банка моделей ПДМ с динамическими показателями, параметризованными характеристической частотой ω_0 и аргументом μ MB. Полученные результаты по выбору полиномиальной модели с максимальным запасом устойчивости по фазе следует дополнить таблицей показателей $\{\beta_j, j=\overline{1,p}\}$ качества процессов в переходном и установившемся режимах сепаратного канала, вмонтированного в структуру двухканальной системы с перекрестными связями, характеризующимися аргументом μ . Таким образом, таблица показателей будет содержать их значения β_j (ν, ω_0, μ).

В качестве примера в табл. 2 приведены значения показателей $\beta_j(v, \omega_0, \mu)$ для ПДМ третьего порядка (*n*=3) с модифицированным БРМН при v=5, v=10, v=20 и $\mu \in [0, 60^\circ] \forall \omega_0$; в таблице: σ — перерегулирование; t_{σ} — момент достижения переходной характеристикой ее максимального значения; t_1 — время первого, после t_{σ} , пересечения переходной характеристикой сраницы допустимой ошибки Δ =5 %; t_2 — время последнего пересечения

	v=5				v = 10					v = 20					
μ,°	σ, %	t _o	<i>t</i> ₁ , c	<i>t</i> ₂ , c	$\frac{D_i}{\omega_0}$	σ, %	t _o	<i>t</i> ₁ , c	<i>t</i> ₂ , c	$\frac{D_i}{\omega_0}$	σ, %	t _o	<i>t</i> ₁ , c	<i>t</i> ₂ , c	$\frac{D_i}{\omega_0}$
0	0			_	0,769	0				0,87	0		_	_	0,930
6	0	_		_	0,774	0		_		0,874	0	_			0,935
12	0	_		_	0,786	0		_		0,889	0	_			0,951
18	0	_		_	0,809	0		_		0,914	0	_			0,978
24	1	$\frac{3,54}{\omega_0}$		_	0,842	0				0,952	0				1,018
30	1,5	$\frac{3,07}{\omega_0}$	_	_	0,888	1,06	$\frac{3,03}{\omega_0}$		_	1,004	0,7	$\frac{3,06}{\omega_0}$			1,074
36	3,8	$\frac{2,78}{\omega_0}$	_	_	0,951	2,7	$\frac{2,65}{\omega_0}$		_	1,075	2	$\frac{2,64}{\omega_0}$			1,15
42	7,7	$\frac{2,58}{\omega_0}$	$\frac{3,35}{\omega_0}$	_	1,035	5,6	$\frac{2,4}{\omega_0}$	$\frac{3,17}{\omega_0}$	$\frac{5,28}{\omega_0}$	1,17	4,2	$\frac{2,36}{\omega_0}$			1,252
48	13,6	$\frac{2,45}{\omega_0}$	$\frac{3,24}{\omega_0}$	_	1,149	10,28	$\frac{2,23}{\omega_0}$	$\frac{3,03}{\omega_0}$	$\frac{5,98}{\omega_0}$	1,3	8	$\frac{2,15}{\omega_0}$	$\frac{2,92}{\omega_0}$	$\frac{5,52}{\omega_0}$	1,39
54	22,4	$\frac{2,36}{\omega_0}$	$\frac{3,16}{\omega_0}$	_	1,307	17,4	$\frac{2,11}{\omega_0}$	$\frac{2,93}{\omega_0}$	$\frac{6,25}{\omega_0}$	1,479	13,8	$\frac{2,01}{\omega_0}$	$\frac{2,79}{\omega_0}$	$\frac{5,86}{\omega_0}$	1,583
60	37,6	$\frac{2,31}{\omega_0}$	$\frac{3,11}{\omega_0}$	$\frac{10,28}{\omega_0}$	1,539	27,8	$\frac{2,03}{\omega_0}$	$\frac{2,85}{\omega_0}$	$\frac{9,1}{\omega_0}$	1,739	22,4	$\frac{1,9}{\omega_0}$	$\frac{2,7}{\omega_0}$	$\frac{5,96}{\omega_0}$	1,861

переходной характеристикой границы допустимой ошибки Δ =5 %. Длительность переходного процесса $t_{\rm np}$ определяется выражением $t_{\rm np} = \max\{t_1, t_2\}$.

Использование данных табл. 2 позволяет предложить следующую оформленную в виде алгоритма процедуру поканального синтеза систем класса "двумерный вход — выход", основанную на использовании возможностей модального управления.

Алгоритм.

1. Сформулировать требования к значениям показателей качества проектируемой системы в переходном и установившемся режимах.

2. Произвести оценку возможного диапазона вариаций параметра μ — аргумента матрицы T — с последующим его представлением в виде интервального числа $[\mu] = [\underline{\mu}, \overline{\mu}]$.

3. В силу доказанных утверждений принять $\mu = \max \left\{ |\mu|, |\overline{\mu}| \right\}$.

4. Произвести оценку порядка *n* исходной динамической модели сепаратного канала на основе модельных представлений образующих его функциональных компонентов и выбрать значение параметра v.

5. Построить векторно-матричное (*A*, *B*, *C*)-представление исходной динамической модели сепаратного канала, рассматриваемого в процедуре синтеза как объект управления.

Таблица 2

6. Осуществить выбор типа ПДМ (параметризованной коэффициентом ν, характеристической частотой ω₀ и аргументом μ), доставляющей системе в условиях наличия перекрестных связей динамические показатели, сформированные в п. 1.

7. Построить модальную модель на основе векторно-матричного (*Г*, *H*)-представления ПДМ, выбранной при выполнении п. 6.

8. Осуществить канонический синтез [4—9, 10] сепаратных каналов двухканальной системы с использованием возможностей модельного управления.

9. Провести комплексное экспериментальное исследование в программе Matlab Simulink динамических показателей спроектированной двухканальной ДС.

Результаты компьютерного эксперимента. Для иллюстрации полученных результатов проведено исследование двух версий двухканальной динамической системы (см. рис. 1), каналы которых построены с использованием ПДМ третьего порядка с модифицируемым биномиальным распределением для значений $\nu = 1$ и $\nu = 10$ при $\omega_0 = 10 \text{ c}^{-1}$ и $\mu = 0$, 30 и 75°.

Графики процессов в пространстве выходов двумерной системы при входном векторном скачкообразном единичном воздействии приведены на рис. 4, *а*—*е*.

ПДМ третьего порядка с модифицированным БРМН при v=1 обладает запасом устойчивости $\Delta \phi = 73,277^{\circ}$, а при $v=10 - \Delta \phi = 83,711^{\circ}$. Как и следовало ожидать, при $\mu = 75^{\circ}$ и v=1 (см. рис. 4, ∂) система оказывается неработоспособной, в то время как при $\mu = 75^{\circ}$ и v=10 (см. рис. 4, e) система остается работоспособной.

СПИСОК ЛИТЕРАТУРЫ

- 1. Акунов Т. А., Сударчиков С. А., Ушаков А. В. Синтез фотоэлектрической следящей системы на основе интервальных модельных представлений. Часть І. Построение интервальной модели компонентов системы // Изв. вузов. Приборостроение. 2004. Т. 47, № 1.
- 2. Акунов Т. А., Сударчиков С. А., Ушаков А. В. Синтез фотоэлектрической следящей системы на основе интервальных модельных представлений. Часть П. Синтез управления, обеспечивающего стабильные эллипсоидные показатели качества системы // Там же. 2004. Т. 47, № 2.
- 3. Квакернаак Х., Сиван Р. Линейные оптимальные системы управления: Пер с англ. М: Мир, 1977.
- 4. Синтез дискретных регуляторов при помощи ЭВМ / В. В. Григорьев, В. Н. Дроздов, В. В. Лаврентьев, А. В. Ушаков. Л.: Машиностроение, 1983.
- 5. Николаев П. В., Сабинин Ю. А. Фотоэлектрические следящие системы. Л.: Энергия, 1969.
- 6. Мирошник И. В. Теория автоматического управления: Линейные системы. СПб.: Питер, 2005.
- 7. Бесекерский В. А., Попов Е. П. Теория систем автоматического регулирования. СПб.: Профессия, 2003.
- 8. Ушаков А. В. Обобщенное модальное управление // Изв. вузов. Приборостроение. 2000. Т. 43, № 3.
- 9. Никифоров В. О., Ушаков А. В. Управление в условиях неопределенности: чувствительность, адаптация, робастность. СПб.: СПбГИТМО (ТУ), 2002.
- 10. Дударенко Н. А., Слита О. В., Ушаков А. В. Математические основы современной теории управления: аппарат метода пространства состояний: Учеб. пособие / Под ред. А. В. Ушакова. СПб.: СПбГУ ИТМО, 2008.

Евгений Дмитриевич Лихолетов	Сведения об авторах — студент; Санкт-Петербургский государственный университет ин-
Анатолий Владимирович Ушаков	 формационных технологии, механики и оптики, кафедра систем управления и информатики; E-mail: bsboris@gmail.com д-р. техн. наук, профессор; Санкт-Петербургский государственный университет информационных технологий, механики и оптики, ка-
Артем Юрьевич Цвентарный	 федра систем управления и информатики; E-mail: ushakov-AVG@yandex.ru аспирант; Санкт-Петербургский государственный университет ин- формационных технологий, механики и оптики, кафедра систем управления и информатики; E-mail: Taifyn@nm.ru
Рекомендована кафедрой систем управления и информатики	Поступила в редакцию 25.12.08 г.