УДК 517.977.5

А. А. АЛЕКСАНДРОВ

ОПТИМИЗАЦИЯ ДИНАМИКИ ЛЕТАТЕЛЬНОГО АППАРАТА ПО РАЗЛИЧНЫМ КРИТЕРИЯМ

Рассматривается решение задачи оптимального управления летательным аппаратом как твердым телом, динамика которого описывается уравнениями Эйлера и Пуассона. Исследуется вопрос построения оптимальных траекторий движения ЛА с помощью алгоритма последовательной оптимизации по иерархии критериев качества и с использованием принципа максимума Понтрягина. Приведен сравнительный анализ полученных результатов.

Ключевые слова: летательный аппарат, оптимальное управление, принцип максимума Понтрягина.

Постановка задачи. При управлении летательным аппаратом (ЛА) важной задачей является определение оптимальных траекторий его движения на различных участках полета. Исследуем управляемое пространственное движение ЛА. Требуется привести его из начального состояния в заданное конечное при минимизации затрат на управление.

Уравнения динамики ЛА как твердого тела содержат [1, 2]:

— уравнения Эйлера, описывающие движение центра масс в связанной системе координат (СК):

$$\dot{v} = \Omega v + g(n - \varepsilon_2), \tag{1}$$

где v — вектор абсолютной земной скорости, g — ускорение свободного падения, n — вектор перегрузок, Ω — матрица Пуассона, ε_2 — элемент матрицы направляющих косинусов ε ;

— уравнение Пуассона, описывающее динамику направляющих косинусов между осями связанной и нормальной СК:

$$\dot{\varepsilon} = \Omega \varepsilon$$
; (2)

— уравнения для определения географических координат:

$$\begin{bmatrix} \dot{\phi} \\ \dot{h} \\ \dot{\lambda} \end{bmatrix} = d^* \varepsilon v, \quad d^* = \begin{vmatrix} \frac{1}{R_3 + h} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{(R_3 + h)\cos\phi} \end{vmatrix}, \tag{3}$$

где $R_3 = 6~375$ км — радиус Земли, h — высота полета, ϕ и λ — широта и долгота положения ЛА.

Матрица Пуассона (кососимметрическая

$$\Omega = -\Omega^T = \begin{bmatrix} 0 & \omega_z & -\omega_y \\ -\omega_z & 0 & \omega_x \\ \omega_y & -\omega_x & 0 \end{bmatrix},$$

где ω — вектор угловой скорости ЛА относительно земной нормальной системы координат, представленный в проекциях на оси связанной СК.

Матрица направляющих косинусов между осями связанной и нормальной систем координат $\varepsilon^T = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$, где ε_1 , ε_2 , ε_3 — соответствующие векторы, представлена в таблице,

где γ , ϑ , ψ — углы крена, тангажа и рыскания;	y_g , x_g , z_g — линейные координаты высо-
ты, продольной и боковой дальности.	

Координата	X_{g}	y_g	Z_{g}
x	$\varepsilon_{11} = \cos \psi \cdot \cos \vartheta$	$\varepsilon_{21} = \sin \vartheta$	$\varepsilon_{31} = -\sin\psi \cdot \cos\vartheta$
у	$ \epsilon_{12} = \sin \psi \cdot \sin \gamma - \\ -\cos \psi \cdot \sin \vartheta \cdot \cos \gamma $	$\varepsilon_{22} = \cos \vartheta \cdot \cos \gamma$	$\varepsilon_{32} = \cos \psi \cdot \sin \gamma + + \sin \psi \cdot \sin \vartheta \cdot \cos \gamma$
z	$ \epsilon_{13} = \sin \psi \cdot \cos \gamma + + \cos \psi \cdot \sin \vartheta \cdot \sin \gamma $	$\varepsilon_{23} = -\cos \vartheta \cdot \sin \gamma$	$ \epsilon_{33} = \cos \psi \cdot \cos \gamma - \\ -\sin \psi \cdot \sin \vartheta \cdot \sin \gamma $

Представим вектор состояния в виде $x = \begin{bmatrix} x_1^T, x_2^T, x_3^T, x_4^T, x_5^T \end{bmatrix}^T$, где $x_1 = \varepsilon_1 = (\varepsilon_{11}, \varepsilon_{12}, \varepsilon_{13})^T$, $x_2 = \varepsilon_2 = (\varepsilon_{21}, \varepsilon_{22}, \varepsilon_{23})^T$, $x_3 = \varepsilon_3 = (\varepsilon_{31}, \varepsilon_{32}, \varepsilon_{33})^T$, $x_4 = (v_x, v_y, v_z)^T$, $x_5 = (\varphi, h, \lambda)^T$. При этом $\dot{y}_g = \dot{h}$, $\dot{x}_g = (R_3 + h)\dot{\varphi}$, $\dot{z}_g = (R_3 + h)\cos\varphi\cdot\dot{\lambda}$.

Задача состоит в приведении ЛА из начального состояния $x(t_0)=x_0$: $\psi_0=\vartheta_0=\gamma_0=0$, $x_{g_0}=0,\ y_{g_0}=200$ м, $z_{g_0}=0,\ v_{x_0}=300$ м/с, $v_{y_0}=v_{z_0}=0$, в конечное x_f : $\psi_f=\gamma_f\approx 0,\ \vartheta_f\in (0\div 5]^\circ,\ x_{g_f}=2000$ м, $y_{g_f}=0,\ z_{g_f}=-200$ м, $v_{y_f}=v_{z_f}\approx 0$. Таким образом планируется осуществить маневр по S-образной траектории при выполнении условий равенства углов и соответствующих проекций скоростей на левом и правом концах траектории.

Оптимизация динамики ЛА по иерархии критериев. В настоящее время известно несколько способов решения рассматриваемой задачи. Согласно одному из них оптимизация динамики ЛА производится по функционалу обобщенной работы Красовского [1—3]:

$$I = V[x, t_2] + \int_{t_0}^{t_f} \left[Q(x, t) + \frac{1}{2} u^T k^{-2} u + \frac{1}{2} u_{\text{опт}}^T k^{-2} u_{\text{опт}} \right] dt ,$$

где V, Q — заданные функции, имеющие непрерывные частные производные по x и t.

Рассмотрим более сложное решение задачи определения оптимального режима маневрирования — по иерархии критериев качества для функционалов следующего вида [4]:

$$\begin{split} I_{1} &= V_{1} \left[x, t_{f} \right]; \\ I_{2} &= V_{2} \left[x, t_{f} \right] + \int_{t_{0}}^{t_{f}} \left[\frac{1}{2} u^{T} k^{-2} u + \frac{1}{2} u_{\text{OHT}}^{T} k^{-2} u_{\text{OHT}} + Q(x, t) \right] dt; \\ V_{1} &= \frac{1}{2} \rho_{1} \left[\arcsin \left(-\frac{\varepsilon_{23}}{\cos(\arcsin \varepsilon_{21})} \right) - \gamma^{*} \right]^{2} + \frac{1}{2} \rho_{2} \left(\arcsin \varepsilon_{21} - 9^{*} \right)^{2} + \frac{1}{2} \rho_{3} \left[-\arctan \varepsilon_{\frac{31}{\varepsilon_{11}}} - \psi^{*} \right]^{2}; \\ V_{2} &= \frac{1}{2} \rho_{4} \left(x_{g_{f}} - x_{g}^{*} \right)^{2} + \frac{1}{2} \rho_{5} \left(y_{g_{f}} - y_{g}^{*} \right)^{2} + \frac{1}{2} \rho_{6} \left(z_{g_{f}} - z_{g}^{*} \right)^{2}, \\ Q &= \frac{1}{2} \left(n - n^{*} \right)^{T} \beta \left(n - n^{*} \right), \ \beta = \operatorname{diag} \left(\beta_{1}, \beta_{2}, \beta_{3} \right). \end{split}$$

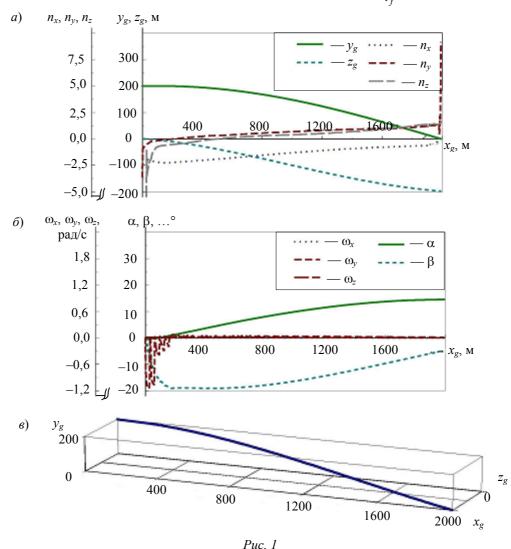
Здесь ρ_k , k=1,...,6, β_i , i=1,2,3, — весовые коэффициенты; $u=\left[\dot{n}^T,\dot{\omega}^T\right]^I=\left[\dot{n}_x,\dot{n}_y,\dot{n}_z,\dot{\omega}_x,\dot{\omega}_y,\dot{\omega}_z\right]^T$ — вектор управления; \dot{n}_x , \dot{n}_y , \dot{n}_z — производные компонент вектора перегрузки в связанных осях; $\dot{\omega}_x$, $\dot{\omega}_y$, $\dot{\omega}_z$ — производные компонент вектора угловых скоростей; индексом "*" отмечены заданные значения соответствующих переменных.

Управление определяется как $u=u_1+u_2$, u_1 и u_2 минимизируют критерии оптимальности I_1 и I_2 соответственно.

В алгоритме последовательной оптимизации $u_1 = \Delta Y \delta(t)$, $\delta(t)$ — дельта-функция Дирака. На первом этапе вычисляется величина ΔY путем итераций на модели ЛА, описываемой уравнениями (1)—(3), при u=0 из условия минимума критерия I_1 по ΔY [4]. При этом минимум определяется последовательно для всех компонент вектора управления.

На втором этапе при Q=0 сигнал управления можно найти аналогично способу решения задачи с одним критерием в виде: $u_2=-k\frac{\Delta V_2}{\Delta Y}$. Отличие здесь заключается в том, что приращение ΔV_2 определяется при $Y(t)=Y(t)+\Delta Y(t)$.

Момент времени t_f корректируется на втором этапе уравнением [3] $\dot{t}_f = -k_t^2 H_{t_f}$ в обеспечение условия равенства нулю гамильтониана $H(x,p,u,t)|_{t_f} = 0$.



На рис. 1, a—s представлено решение задачи оптимизации динамики ЛА по иерархии критериев: a — проекции оптимальной траектории и зависимости $n_x(x_g)$, $n_y(x_g)$, $n_z(x_g)$; δ — углы $\alpha(x_g)$, $\beta(x_g)$ и зависимости $\omega_x(x_g)$, $\omega_y(x_g)$, $\omega_z(x_g)$; s — пространственный вид оптимальной траектории.

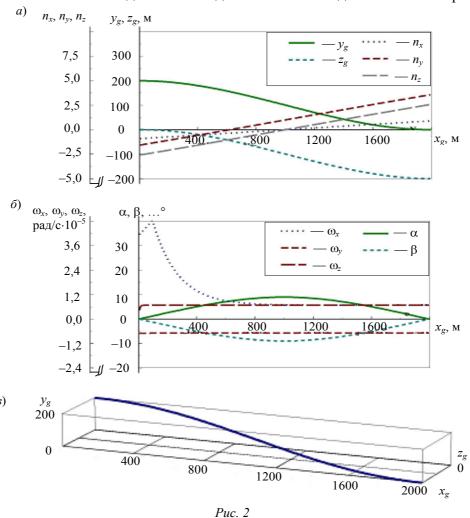
Оптимизация динамики ЛА при минимизации затрат на управление. Содержание данного раздела является продолжением и развитием ряда исследований по оптимальному управлению с использованием модели, описанной уравнениями (1)—(3) [1—5]. Оптимальное управление строится по принципу максимума Понтрягина [6].

В качестве целевого функционала выбирается критерий Лагранжа

$$I = \frac{1}{2} \int_{t_0}^{t_f} \left(u^T k^{-2} u \right) dt ,$$

отражающий минимизацию затрат на управление на интервале оптимизации; здесь $k^{-2}=\mathrm{diag}\Big[k_1^{-2},\dots,k_6^{-2}\Big],\ t_0$ и t_f — начальный заданный и свободный конечный моменты времени соответственно, $u=\Big[n^T,\omega^T\Big]^T=\Big[n_x,n_y,n_z,\omega_x,\omega_y,\omega_z\Big]^T$ — вектор управления.

Синтез оптимального управления по принципу максимума [6] сводится к решению двухточечной краевой задачи, которая решается методом Ньютона [7]. Выбранный метод численного решения позволяет добиться сходимости и необходимой точности решения.



При заданных начальных условиях в течение одной итерации были получены [8] оптимальные начальные значения сопряженных переменных. Решение по критерию Лагранжа представлено на рис. 2, a—s: a — проекции оптимальной траектории и зависимости $n_x(x_g)$, $n_y(x_g)$, $n_z(x_g)$; δ — углы $\alpha(x_g)$, $\beta(x_g)$ и зависимости $\omega_x(x_g)$, $\omega_y(x_g)$, $\omega_z(x_g)$; ϵ — пространственный вид оптимальной траектории.

Заключение. Рассмотрена задача построения оптимальных траекторий полета ЛА с помощью алгоритма последовательной оптимизации по иерархии критериев и с использованием принципа максимума. Оба алгоритма позволяют реализовать S-образные траектории. Алгоритм последовательной оптимизации имеет вычислительные преимущества по сравнению с решением задачи по принципу максимума за счет использования аналитических выражений для прогнозируемых значений вектора состояния. При решении задачи по принципу максимума Понтрягина при минимизации затрат на управление в вектор невязок можно включить любое количество заданных на правом конце компонент вектора состояния без изменения структуры алгоритма. Полученное по принципу максимума управление отличается близким к линейному характером для данного типа траектории и находится за одну итерацию методом Ньютона.

Исследования показали, что с помощью рассмотренных алгоритмов оптимального управления по различным критериям можно решать задачи маневрирования ЛА в широком диапазоне задания начальных и конечных условий.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Красовский А. А.* Метод быстрого численного интегрирования одного класса динамических систем // Изв. АН СССР. Сер. Техн. кибернетика. 1989. № 1. С. 3—14.
- 2. *Красовский А. А.* Основы алгоритмического обеспечения систем автоматического управления полетом с глубокой интеграцией // Вопросы кибернетики: Проблемы комплексирования кибернетических динамических систем / Науч. совет АН РСФСР по комплексной проблеме "Кибернетика". М., 1992. С. 6—30.
- 3. Кабанов С. А. Управление системами на прогнозирующих моделях. СПб.: Изд-во СПбГУ, 1997. 200 с.
- 4. Wang H. M., Kabanov S. A. Optimal control of the return of a flying object on the hierarchy of criterion of quality // Proc. 2002 FIRA Robot World Congress. Seoul, Korea. 2002. P. 187—190.
- 5. *Кабанов С. А.* Алгоритм последовательной оптимизации со спиральным прогнозом для управления спускаемым аппаратом // Изв. РАН. Сер. Техн. кибернетика. 1993. № 4. С. 141—147.
- 6. *Понтрягин Л. С., Болтянский В. Г., Гамкрелидзе Р. В., Мищенко Е. Ф.* Математическая теория оптимальных процессов. М.: Физматлит, 1961. 392 с.
- 7. Федоренко Р. П. Приближенное решение задач оптимального управления. М.: Наука, 1978. 488 с.
- 8. Кабанов С. А., Александров А. А. Прикладные задачи оптимального управления: Учеб. пособие. СПб.: Изд-во Балт. гос. техн. ун-та, 2007. 76 с.

Сведения об авторе

Антон Аскольдович Александров

аспирант; Балтийский государственный технический университет "Военмех", кафедра систем обработки информации и управления, Санкт-Петербург; E-mail: antonhill@mail.ru

Рекомендована кафедрой систем обработки информации и управления

Поступила в редакцию 05.06.08 г.