М. В. СМИРНОВА, А. А. ВОРОНИН, А. М. БУРБАЕВ

СПОСОБ ПОВЫШЕНИЯ РАЗРЕШАЮЩЕЙ СПОСОБНОСТИ СПЕКТРОФОТОМЕТРА С ВОГНУТОЙ ДИФРАКЦИОННОЙ РЕШЕТКОЙ

Рассматривается способ повышения разрешающей способности спектрофотометра "Кедр-М", предназначенного для анализа породы древесины. Показана возможность повышения разрешающей способности посредством изменения размеров рабочей поверхности дифракционной решетки. Представлен численный метод расчета распределения интенсивности пятна рассеяния и разрешающей способности прибора с вогнутой дифракционной решеткой.

Ключевые слова: вогнутая дифракционная решетка, порядок спектра, разрешающая способность, пятно рассеяния.

Разрешающая способность является главной характеристикой качества спектрального прибора. Известно, что для оценки разрешающей способности *R* спектрального прибора необходимо построить два изображения спектральных линий равной интенсивности и подобрать для них такое значение $\Delta\lambda$ (предел разрешения), чтобы расстояние между двумя линиями равной интенсивности было равно полуширине изображения одной из них [1, 2]. В качестве численной характеристики разрешающей способности принимается безразмерная величина: $R = \lambda/\Delta\lambda$, где λ — средняя длина волны двух разрешаемых линий.

В соответствии с ГОСТ 8.557-2007 [3] для аттестации спектрофотометра в качестве средства измерения необходимо применить светофильтр, например, ПС-7 (пурпурный светофильтр). Однако разрешающая способность прибора является недостаточной для определения полос поглощения светофильтра. В этой связи предлагается рассматриваемый в настоящей статье способ повышения разрешающей способности прибора путем доработки его конструкции.

Задачей исследования является определение разрешающей способности спектрофотометра "Кедр-М" при разных размерах дифракционной решетки и нахождение такого размера ее рабочей поверхности, при котором будет обеспечено повышение разрешающей способности.

Расчет положений дифракционных максимумов представлен схемой на рис. 1, где 1 — образец древесины, 2 — источник излучения, 3 — входное и выходное окно фотометрического шара, 4 — фотометрический шар, 5 — входная щель прибора, 6 — дифракционная решетка, 7 — экран (ПЗС-линейка "Toshiba TCD-1304", 3648 элементов [4]). Ширина и форма спектральных линий являются определяющим фактором разрешающей способности прибора [2]. В этой связи необходимо исследовать, как влияет ширина рабочей поверхности дифракционной решетки на аберрации оптической системы и тем самым на форму спектральных линий.

Для расчета целесообразно использовать систему координат, центр которой совпадает с центром кривизны дифракционной решетки, а ось *OX* проходит через ее середину. Плоскость *XOY* совпадает с меридиональной плоскостью системы.

Источником излучения в этой системе служит входная щель шириной *S*. Центр входной щели находится на расстоянии *z* от середины дифракционной решетки. Отрезок, границами которого являются центр входной щели и середина дифракционной решетки, составляет угол α к оси *OX*. Узкий световой пучок с длиной волны излучения λ направлен из центра входной щели на дифракционную решетку под углом α' к оси *OX*. Геометрический расчет по-

казывает, что в этом случае угол между лучом и нормалью к поверхности дифракционной решетки в точке засветки этим лучом (угол падения луча на решетку) равен

$$\varphi = \arcsin\left((z/r)\sin(\alpha - \alpha') + \sin\alpha'\right),$$

где *г* — радиус кривизны дифракционной решетки.

Координата по оси *ОУ* точки засветки на дифракционной решетке

$$y_d = r \sin(\alpha' - \varphi)$$

Направления главных максимумов интерференции пучков, дифрагированных на малом участке вогнутой решетки, определяются по той же формуле, что и для плоской отражательной решетки [1]:

$$\sin\varphi + \sin(-\varphi') = m\lambda N,$$

где *N* — количество штрихов решетки на один миллиметр, ϕ' — угол дифракции, *m* — порядок дифракции.

Отсюда находим

$$\varphi' = \arcsin\left(\sin\varphi - m\lambda N\right).$$

Зная угол дифракции, несложно определить положение интерференционного максимума на экране (в частности, координату по оси *OY*):

$$y_{9} = (Cy_d + ABC - AD)/(A+C),$$

где $A = tg(\varphi' - \arcsin(y_d/r)); B = (r^2 - y_d^2)^{1/2}; D = C(r - c_1 \cos\gamma_1) - c_1 \sin\gamma_1; C = (c_2 \sin\gamma_2 - -c_1 \sin\gamma_1)/(c_1 \cos\gamma_1 - c_2 \cos\gamma_2).$

Параметры $c_1, c_2, \gamma_1, \gamma_2$ определяют положение экрана (см. рис. 1).

Параметры прибора: m = -1; r = 125 мм; z = 140 мм; N = 0,3 лин/мкм; $\alpha = 2^{\circ}$; $\gamma_1 = 6,3^{\circ}$; $\gamma_2 = 19,6^{\circ}$; $c_1 = 112,1$ мм; $c_2 = 105,7$ мм.

Таким образом, можно произвести расчет положения максимумов на экране в зависимости от угла α', что необходимо для определения размеров пятна рассеяния.

Координаты секций дифракционной решетки представлены на рис. 2. Дифракционная решетка состоит из 7 секций общей площадью 1600 мм². Обозначим нижнюю и верхнюю границы дифракционной решетки как D_1 и D_2 , причем в соответствии с рис. 2 D_1 =-20 мм и D_2 =20 мм. Для того чтобы показать возможность повышения разрешающей способности посредством изменения размеров рабочей поверхности дифракционной решетки, следует

изменять значения D₁ и D₂ в зависимости от количества секций. На рис. 2 секции 1, 5, 6, 7 дифракционной решетки представлены как нерабочие поверхности.

Для оценки разрешающей способности прибора (рис. 3) необходимо построить два изображения спектральных линий с длинами волн λ и $\lambda + \Delta \lambda$ и подобрать для них такое значение $\Delta\lambda$, чтобы расстояние (*l*) между максимумами спектральных линий было равно полуширине этих линий.

Получить изображение спектральной линии в явном виде нельзя, поэтому был использован численный метод для построения этих изображений. В программе, разработанной на языке Turbo Pascal 7.1, каждый элемент ПЗС-линейки сопоставляется с элементом массива *I*(*m*). Пучок света с длиной волны λ , проходящий через входную щель шириной S, разбивается на дискретные лучи с шагом $\Delta \alpha'$ по направлению и шагом ΔS по координате прохождения через входную щель. Каждый луч увеличит значение элемента массива, соответствующего элементу ПЗС-линейки, на котором проявится интерференционный максимум. В результате значения элементов массива будут пропорциональны интенсивности засветки элементов реальной ПЗС-линейки. Таким образом, используя массив I(m), можно построить изображение спектральной линии.

Для того чтобы определить, насколько изменение размеров дифракционной решетки влияет на предел разрешения, разрешающую способность и интенсивность пятна рассеяния, необходимо сначала определить перечисленные характеристики для случая полной рабочей поверхности дифракционной решетки, а также для случаев, когда исключены несколько секций решетки. В табл. 1 представлены итоговые результаты расчетов для решетки начальных размеров (полная поверхность), а в табл. 2 — те же результаты для решетки, состоящей из

трех секций, при D_1 = -14,3 мм, D_2 = 2,9 мм; в таблицах I_{max} —	максимальная величина интен-
сивности пятна рассеяния, в относительных единицах.	

			Таблица 1
λ, нм	Δλ, нм	I_{max} , o.e.	$R = \lambda / \Delta \lambda$
440	3,0	0,99	146,7
470	3,0	0,97	156,7
500	3,0	0,95	166,7
530	3,2	0,93	165,6
560	3,3	0,89	169,7
590	3,5	0,86	168,6
620	3,5	0,85	177,1
650	3,3	0,84	197,0
680	3,4	0,82	200,0
710	3,4	0,81	208,8
740	3,5	0,79	211,4
770	3,5	0,78	220,0

			1 и0лици 2
λ, нм	Δλ, нм	I_{max} , o.e.	$R=\lambda/\Delta\lambda$
440	2,6	0,79	172,5
470	2,6	0,77	184,3
500	2,6	0,76	192,3
530	2,5	0,76	212,0
560	2,5	0,74	224,0
590	2,5	0,73	236,0
620	2,5	0,74	248,0
650	2,5	0,76	260,0
680	2,7	0,76	251,9
710	2,5	0,79	284,0
740	2,7	0,79	274,1
770	2,7	0,78	285,2

Таблица ?

Результаты исследования, представленные в табл. 1 и 2, показывают, что целесообразно оставить секции 4, 3, 2 дифракционной решетки общей площадью 685 мм². Полученные значения разрешающей способности прибора (см. табл. 2) в среднем на 20 % выше по сравнению с разрешающей способностью при начальных размерах рабочей поверхности дифракционной решетки.

Предложенный способ повышения разрешающей способности был опробован на опытных образцах прибора "Кедр-М", проходивших аттестацию в Государственном центре испытаний средств измерений "Тест — С.-Петербург". Итогом аттестации стало внесение прибора в реестр средств измерений (ППИ "Кедр-М" зарегистрирован в государственном реестре СИ — № 46157-10), что свидетельствует о положительном результате реализации метода.

СПИСОК ЛИТЕРАТУРЫ

- 1. Пейсахсон И. В. Оптика спектральных приборов. Л.: Машиностроение, 1975. С. 312.
- 2. Зайдель А. Н., Островская Г. В., Островский Ю. И. Техника и практика спектроскопии. М.: Наука, 1972. С. 376.
- ГОСТ 8.557-2007 ГСИ. Государственная поверочная схема для средств измерений спектральных, интегральных и редуцированных коэффициентов направленного пропускания и оптической плотности в диапазоне длин волн 0,2 — 20,0 мкм. М.: Изд-во стандартов, 2008.
- 4. [Электронный pecypc]: <http://www.spectralproducts.com/catalog/pdf/TCD1304AP.pdf>.

Сведения об авторах				
Мария Владимировна Смирнова —	студентка; Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, ка- федра компьютеризации и проектирования оптических приборов; E-mail: listsv@mail.ru			
Андрей Анатольевич Воронин —	канд. техн. наук; Научно-производственный центр "Инновационная техника и технологии", Санкт-Петербург; зам. генерального директора по науке; E-mail: V-electronics@mail.ru			
Амир Маруанович Бурбаев —	доцент; Санкт-Петербургский национальный исследовательский уни- верситет информационных технологий, механики и оптики, кафедра компьютеризации и проектирования оптических приборов			
Рекомендована кафедрой компьютеризации и проектирования оптических приборов	Поступила в редакцию 25.06.12 г.			