Е. И. ВАХРАМЕЕВ, К. С. ГАЛЯГИН, А. С. ИВОНИН, М. А. ОШИВАЛОВ

ПРОГНОЗ И КОРРЕКЦИЯ ТЕПЛОВОГО ДРЕЙФА ВОЛОКОННО-ОПТИЧЕСКОГО ГИРОСКОПА

Рассматривается методика алгоритмического прогноза показаний волоконнооптического гироскопа в условиях внешних тепловых воздействий на датчик чувствительности. Приведено обоснование методики и представлены результаты ее использования для численной коррекции показаний гироскопа в условиях натурных тепловых испытаний.

Ключевые слова: волоконно-оптический гироскоп, тепловой дрейф, датчик чувствительности, прогноз, коррекция, расчет, термометрия.

Одной из множества проблем при создании волоконно-оптических гироскопов (ВОГ) является их подверженность внешним тепловым воздействиям, приводящим к возникновению фиктивной, термически индуцированной "кажущейся" угловой скорости [1, 2]. Исследования показывают, что причина появления теплового дрейфа угловой скорости ВОГ связана с изменением показателя преломления светопроводящей жилы в условиях нестационарного поля термоупругих напряжений в витках оптического контура (пьезооптический эффект).

В предыдущих работах [3, 4] авторами рассматривалась возможность прямого математического моделирования поведения ВОГ в условиях тепловой нестабильности состояния оптического блока на основе численного решения системы уравнений термофотоупругости. В результате была создана математическая модель, позволяющая достаточно корректно прогнозировать термически индуцированный дрейф показаний ВОГ. Однако применение такой расчетной модели для коррекции показаний гироскопа в условиях реальной его работы оказалось малопригодным в силу чрезвычайно высокой вычислительной трудоемкости процедуры прогноза дрейфа и неоднозначности исходных данных для расчета.

В продолжение исследований теплового дрейфа в настоящей статье предлагается принципиально иной подход к алгоритмическому прогнозу показаний прибора для коррекции теплового смещения ВОГ в реальном масштабе времени по данным натурной термометрии датчика чувствительности. Для обоснования и иллюстрации предлагаемой методики прогноза используется ранее разработанная численная дифференциальная модель описания показаний неподвижного гироскопа в условиях тепловой нестабильности оптоволоконного контура [4]. В целях сокращения вычислительных затрат используется упрощенный вариант модели, в котором фазовый набег определяется только тепловым удлинением световода и температурной зависимостью показателя преломления волокна без учета эффектов фотоупругости.

Рассмотрим датчик чувствительности ВОГ, представляющий собой цилиндрическую катушку с оптоволоконным контуром, залитым компаундом. Элементы металлического каркаса, обрамляющие оптоволоконный узел, имеют, как правило, более высокие теплопроводящие свойства, поэтому можно пренебречь термическим сопротивлением элементов каркаса и считать наружную поверхность контура расчетной схемы изотермической, температура $t(\tau)$ которой изменяется с течением времени.

Предлагаемая методика прогноза показаний ВОГ основывается на понятии "единичный дрейф", который представляет собой тарировочную зависимость реакции гироскопа на элементарное тепловое возмущение. Единичный дрейф формируется в виде числового массива значений фиктивной угловой скорости для дискретной последовательности моментов времени с шагом h_k , соответствующих моментам формирования прогноза. Для иллюстрации единичного дрейфа приведем результаты расчета дрейфа по дифференциальной модели при элементарном (тарировочном) тепловом возмущении (δ) чувствительного элемента, когда температура поверхности датчика линейно возрастает на Δt^* за время, соответствующее h_k , после чего остается постоянной (рис. 1, *a*). При этом темп нагрева в пределах временного интервала $0 < \tau < h_k$ также остается постоянным:

$$T^* = \frac{\Delta t^*}{h_k} \, .$$

Результаты расчета тарировочного дрейфа при $h_k = 5$ с и $T^* = 0,002$ °C представлены на рис. 1, δ .

Как и следовало ожидать, в течение первых 5 с, когда температура датчика линейно возрастает, наблюдается интенсивное смещение показаний гироскопа, а по окончании нагрева дрейф фиктивной угловой скорости ω резко снижается со сменой знака и монотонно затухает в течение длительного времени. Отрицательный дрейф после импульса нагрева объясняется рас-

пространением теплоты внутри оптоволоконного узла, что приводит к изменению его температурного поля даже при постоянной температуре поверхности датчика.

По непрерывной зависимости смещения гироскопа от времени производится выборка дискретных значений угловой скорости с шагом h_k (на рис. 1, δ отмечены маркерами), которые формируются в виде массива единичного дрейфа D^*_k , где k = 1, 2, ..., N, N — размер тарировочного массива, принимаемый в соответствии с затуханием дрейфа.

Алгоритм расчетного формирования прогноза на базе единичного дрейфа строится следующим образом. По температуре поверхности оптоволоконного датчика в каждый момент времени путем численного дифференцирования рассчитывается темп ее изменения

$$T_i = \frac{t_i - t_{i-1}}{h_{\kappa}}$$

где $i = 1, 2, 3 \dots$ номер разбиения по времени с шагом h_k .

Далее последовательно для каждого момента формируется элементарный прогноз дрейфа, вызванного текущим темпом нагрева *T_i*, в виде произведения массива единичного дрейфа на относительный темп нагрева:

$$D_i = D_k^* T_i / T^*, \ k = 1...N_i$$

Предварительный прогноз на каждом временном шаге записывается относительно текущего момента. Для получения результирующего значения теплового дрейфа в произвольный момент времени необходимо просуммировать все предыдущие элементарные прогнозы для этого момента. Алгоритм расчета может быть представлен следующим образом:

$$i = 1; \quad D_1^{p} = D_1^* \frac{T_1}{T^*};$$

$$i = 2; \quad D_2^{p} = D_2^* \frac{T_1}{T^*} + D_1^* \frac{T_2}{T^*};$$

$$i = 3; \quad D_3^{p} = D_3^* \frac{T_1}{T^*} + D_2^* \frac{T_2}{T^*} + D_1^* \frac{T_3}{T^*}...$$
(1)

Таким образом, путем суммирования элементарных прогнозов для N предшествующих моментов времени рассчитывается результирующий тепловой дрейф для каждого момента τ_i :

$$D_i^{\rm p} = \sum_{j=1}^i D_j^* \frac{T_{i-j+1}}{T^*} \quad \text{при } i \le N; \quad D_i^{\rm p} = \sum_{j=1}^N D_j^* \frac{T_{i-j+1}}{T^*} \quad \text{при } i > N.$$
(2)

Проиллюстрируем данную процедуру прогноза на следующем примере. Рассмотрим ситуацию, когда температура поверхности датчика чувствительности изменяется по закону косинуса в течение 60 с (рис. 2, *a*). Рассчитанный методом конечно-разностного дифференцирования темп изменения температуры в этот период времени подчиняется синусоидальному распределению. На рис. 2, *б* приведены результаты расчета теплового дрейфа гироскопа в условиях данного теплового возмущения двумя различными способами: сплошная линия соответствует расчету по дифференциальной модели (высокотрудоемкой по вычислительным затратам) на основе уравнений термоупругости и пьезооптики; маркерами на графике отмечены результаты прогноза дрейфа с интервалом $h_k = 5$ с, полученные на основе соотношений (2) с использованием массива единичного дрейфа (см. рис. 1, *б*). Оба варианта расчета дают согласованные результаты, причем не только на участке интенсивного дрейфа, но и на участке затухания дрейфа фиктивной угловой скорости. Небольшие различия результатов связаны с дискретностью методики прогноза во времени и очевидно будут снижаться при уменьшении величины h_k .

В рассмотренном примере расчета термическое сопротивление элементов каркаса катушки было принято нулевым. Следует отметить, что предлагаемая методика численного прогноза дрейфа может быть успешно применима и при конечной тепловой проводимости каркаса. В этой ситуации реакция гироскопа на внешнее тепловое возмущение будет происходить с некоторым временным запаздыванием, что естественным образом найдет отражение в характере тарировочного массива единичного дрейфа.

Переходя к вопросу практической реализации алгоритма прогноза, отметим, что применение средств математического моделирования для расчета массива единичного дрейфа малоэффективно в силу недостаточной точности исходных данных для расчета (теплофизических характеристик материалов конструкции, информации о дефектах укладки оптоволоконного контура и т.д.).

В связи с этим предлагается следующий способ формирования единичного дрейфа. На этапе тарировки проводится термоиспытание неподвижного гироскопа с непрерывной синхронной регистрацией дрейфа и температуры поверхности датчика чувствительности. По данным термометрии рассчитывается темп изменения температуры T_i в 2*N*–1 последовательных точках с временным шагом h_k . При наличии информации о величине результирующего дрейфа гироскопа D_i^p в эти моменты времени, полученной в ходе натурного испытания прибора, на основе соотношений (2) формируется система линейных алгебраических уравнений *N*-го порядка относительно элементов массива единичного дрейфа D_j^* . В соответствии с решением этой системы уравнений рассчитывается тарировочный дрейф D_j^* , который в дальнейшем может быть использован для прогноза дрейфа, согласно алгоритму суммирования (2), в реальном масштабе времени работы прибора по данным натурной термометрии. Очевидно, что в этом случае будут учтены не только физические особенности возникновения термоиндуцированного смещения гироскопа, но и индивидуальные особенности (дефекты) изготовления данного экземпляра оптоволоконного блока.

Рассмотрим результаты практической апробации предложенной методики. На рис. 3, *а* показана динамика изменения температуры датчика в ходе многочасового циклического теплового испытания образца гироскопа в диапазоне –40…+60 °C. На рис. 3, *б* представлены результаты конечно-разностного расчета темпа изменения температуры оптического блока, а на рис. 3, *в* — соответствующая запись показаний угловой скорости неподвижного гироскопа, обработанная скользящим числовым фильтром.

Из анализа графиков следует, что поведение гироскопа абсолютно адекватно имеющимся представлениям о механизме возникновения теплового дрейфа. При нестационарном изменении температуры наблюдаются знакопеременные всплески фиктивной угловой скорости, достигающие уровня –0,6...1,0 °/ч.

Для тарировки данного гироскопа был выбран получасовой интервал времени записи (15,6—16,1 ч), когда температура датчика повышалась от -37 до 0 °C (на рис. 3, *а* этот интервал отмечен вертикальными линиями). Посредством обработки сигнала на этом интервале записи сформирован тарировочный массив единичного дрейфа. Результаты компенсации наглядно проиллюстрированы рис. 3, *г*. Сопоставляя графики, приведенные на рис. 3, *в* и 3, *г*, можно сделать вывод о том, что в результате компенсации с использованием рассмотренной процедуры численного прогноза дрейфа удалось снизить величину термически индуцированного смещения гироскопа в 3—5 раз, что свидетельствует об эффективности предложенного подхода.

СПИСОК ЛИТЕРАТУРЫ

- 1. Шереметьев А. Г. Волоконный оптический гироскоп. М.: Радио и связь, 1987.
- 2. Джашитов В. Э., Панкратов В. М. Математические модели теплового дрейфа гироскопических датчиков инерциальных систем. СПб: ЦНИИ "Электроприбор", 2001.
- 3. Галягин К. С. и др. Программный комплекс расчета теплового дрейфа волоконно-оптического гироскопа // Вестн. ПГТУ. Аэрокосмическая техника. 2005. № 21. С. 23—28.
- 4. Вахрамеев Е. И., Галягин К. С., Ивонин А. С., Ошивалов М. А., Ульрих Т. А. Тепловой дрейф волоконного оптического гироскопа // Изв. вузов. Приборостроение. 2011. Т. 54, № 1. С. 32—37.

Cardenna of comonan

		Сведения до авторих
Евгений Иванович Вахрамеев		канд. техн. наук, доцент; Пермский национальный исследова-
		тельский политехнический университет, кафедра теплотехники;
		E-mail: abins@pstu.ru
Константин Спартакович Галягин	_	канд. техн. наук, доцент; Пермский национальный исследователь-
		ский политехнический университет, кафедра теплотехники;
		E-mail: abins@pstu.ru
Александр Сергеевич Ивонин	—	аспирант; Пермский национальный исследовательский политехни-
		ческий университет, кафедра теплотехники;
		E-mail: alex_sambist@mail.ru
Михаил Анатольевич Ошивалов	—	канд. техн. наук, доцент; Пермский национальный исследователь-
		ский политехнический университет, кафедра теплотехники;
		E-mail: abins@pstu.ru

Рекомендована кафедрой теплотехники

Поступила в редакцию 30.11.12 г.