#### Сведения об авторах

Артур Александрович Абдуллин

аспирант; Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, кафедра электротехники и прецизионных электромеханических систем; E-mail: artur.abdullin@gmail.com

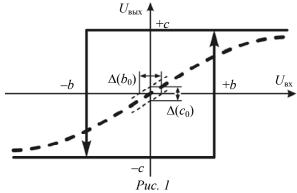
Николай Александрович Поляков

аспирант; Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, кафедра электротехники и прецизионных электромеханических систем; E-mail: polyakov.ets.itmo@gmail.com

Рекомендована кафедрой электротехники и прецизионных электромеханических систем Поступила в редакцию 17.06.13 г.

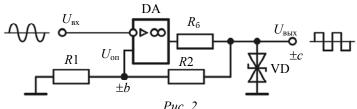
УДК 681.511.4; 629.78.054.623

# С. В. Лучко, С. Ю. Балуев, М. А. Ватутин, Ю. А. Кузьмичев, А. И. Ключников, В. П. Ефимов


# ТОЧНОСТНЫЕ ПАРАМЕТРЫ НЕЛИНЕЙНОГО ЗВЕНА ДЛЯ АВТОКОЛЕБАТЕЛЬНОГО АКСЕЛЕРОМЕТРА

Даны рекомендации по минимизации влияния отклонений от номинального значения параметров применяемых радиоэлементов для снижения погрешности измерений.

**Ключевые слова:** датчики, автоколебательный режим, погрешность измерения ускорения, акселерометр, возмушение.


Одним из способов снижения погрешности измерений с помощью серийного маятникового акселерометра является обеспечение работы его чувствительного элемента (подвижной массы) в режиме автоколебаний [1] путем введения в схему нелинейного звена (Н3).

Электромеханическая часть маятникового акселерометра в первом приближении является системой второго порядка. Возникновение автоколебаний в такой системе обеспечивает введение нелинейности типа "петля гистерезиса" [2], характеристика которой приведена на рис. 1.



Нелинейное звено характеризуется двумя параметрами — выходным уровнем сигнала  $\pm c$  и порогом срабатывания  $\pm b$ . Их нестабильность приводит к смещению характеристики от нулевого значения на  $\Delta(c_0)$  и  $\Delta(b_0)$  соответственно и повышению погрешности выполняемых измерений. Очевидно, что для снижения погрешности и увеличения стабильности производимых измерений необходимо уменьшать отклонение параметров нелинейного звена b и c от их номинальных значений.

Реализовать характеристику "петля гистерезиса" на электронных компонентах наиболее удобно при помощи операционного усилителя (ОУ) DA и двуханодного стабилитрона VD (рис. 2) по схеме триггера Шмитта (здесь  $R_6$  — балластное сопротивление параметрического стабилитрона).



В нелинейном звене формируются напряжения  $U_{\text{вых}}$  и  $U_{\text{оп}}$ , которые по сути являются параметрами  $\pm c$  и  $\pm b$  соответственно.

На неинвертирующий вход ОУ поступает напряжение  $U_{\rm Bx}$ , значение которого пропорционально углу отклонения маятника, оно сравнивается с опорным  $U_{\rm on}$ , на выходе НЗ формируется дискретный сигнал  $U_{\rm Bыx}$  прямоугольной формы.

Величина опорного напряжения  $U_{\rm on}$  зависит от параметров каждого элемента, используемого в нелинейном звене:

$$U_{\text{OII}} = F(R1, R2, U_{\text{CT}}, U_{\text{CM}}),$$

где  $U_{\rm cr}$  — напряжение стабилизации стабилитрона;  $U_{\rm cm}$  — напряжение смещения операционного усилителя, и определяется следующим выражением:

$$U_{\rm off} = \frac{R2}{R1 + R2} U_{\rm ct} + U_{\rm cm} \,. \tag{1}$$

Использование элементов с параметрами, отличными от расчетных, приводит к отклонению  $\Delta(U^*_{\text{оп}})$  опорного напряжения от расчетной величины  $U^*_{\text{оп}}$ :

$$U_{\text{OII}} = U^*_{\text{OII}} + \Delta \left( U^*_{\text{OII}} \right). \tag{2}$$

У любого радиоэлемента отклонение от номинального значения  $\Pi_{\text{ном}}$  параметра  $\Pi$  можно разделить на статическое  $\Delta_c(\Pi)$  (разброс значения параметра, неизменно во времени) и динамическое  $\Delta_n(\Pi)$  (дрейф значения параметра во времени):

$$\Pi = \Pi_{\text{HOM}} + \Delta_{c} \left( \Pi \right) + \Delta_{\pi} \left( \Pi \right). \tag{3}$$

Статическое отклонение параметра  $\Delta_c(\Pi)$  относится к систематической погрешности. Погрешность, вызванную отклонением параметра  $\Delta_c(\Pi)$ , можно учесть при изготовлении и калибровке измерительного прибора.

Значение отклонения параметра  $\Delta_{\text{д}}(\Pi)$  изменяется в процессе эксплуатации радиоэлемента, что приводит к погрешности функционирования электронного блока, в состав которого входит элемент.

Для нелинейного звена (см. рис. 2) значение дрейфа  $\Delta_{\text{д}}(\Pi)$  зависит от следующих элементов:

- операционный усилитель дрейф напряжения смещения  $\Delta(U_{cm})$  [4];
- стабилитрон температурный коэффициент напряжения (ТКН) [5];
- резистор температурный коэффициент сопротивления [6].

Отклонение опорного напряжения при произвольных значениях сопротивлений резисторов *R*1 и *R*2 определяется следующим образом [3]:

$$\Delta \left( U^*_{\text{OII}} \right) = \frac{\partial F}{\partial R_1} \Delta \left( R_1 \right) + \frac{\partial F}{\partial R_2} \Delta \left( R_2 \right) + \frac{\partial F}{\partial U_{\text{CT}}} \Delta \left( U_{\text{CT}} \right) + \frac{\partial F}{\partial U_{\text{CM}}} \Delta \left( U_{\text{CM}} \right). \tag{4}$$

Взяв частные производные, получим

$$\Delta \left( {U^*}_{\text{OII}} \right) = -\frac{R2}{\left( R1 + R2 \right)^2} \Delta \left( R1 \right) U_{\text{CT}} + \frac{R1}{\left( R1 + R2 \right)^2} \Delta \left( R2 \right) U_{\text{CT}} + \frac{R2}{R1 + R2} \Delta \left( U_{\text{CT}} \right) + 1 \Delta U_{\text{CM}}.$$

Подведя выражение под общий знаменатель, окончательно получим:

$$\Delta \left(U_{\text{off}}^{*}\right) = \frac{\left(R1\Delta(R2) - R2\Delta(R1)\right)U_{\text{CT}}}{\left(R1 + R2\right)^{2}} + \frac{R2\Delta(U_{\text{cT}})\left(R1 + R2\right) + \Delta(U_{\text{cM}})\left(R1 + R2\right)^{2}}{\left(R1 + R2\right)^{2}}.$$
 (5)

Анализ выражения (5) показывает, что наибольшее влияние на отклонение опорного напряжения (с коэффициентом  $(R1+R2)^2$ ) оказывает дрейф напряжения смещения операционного усилителя  $\Delta(U_{\rm cm})$ . В меньшей степени (с коэффициентом R2(R1+R2)) влияние оказывает ТКН стабилитрона.

Интересен случай  $\Delta(R1)$ = $\Delta(R2)$ . Если предположить, что у резисторов R1 и R2 отклонение от номинального значения будет совпадать с высокой степенью точности, то выражение (5) примет вид

$$\Delta \left( U^*_{\text{OII}} \right) = \frac{R2\Delta \left( U_{\text{CT}} \right) + \Delta U_{\text{CM}} \left( R1 + R2 \right)}{\left( R1 + R2 \right)}.$$

Промышленностью выпускаются сборки резисторов и делители напряжения [6]. Введем обозначение R1=R2=R, тогда:

$$\Delta \left( U_{\text{OII}}^* \right) = \frac{R \left[ \Delta \left( U_{\text{CT}} \right) + 2\Delta \left( U_{\text{CM}} \right) \right]}{2R} = 0,5 \left[ \Delta \left( U_{\text{CT}} \right) + 2\Delta \left( U_{\text{CM}} \right) \right]. \tag{6}$$

Отсюда следует, что на значение отклонения опорного напряжения  $\Delta(U^*_{\text{оп}})$  и погрешность измерения маятникового акселерометра наибольшее влияние оказывают дрейф напряжения смещения операционного усилителя  $\Delta(U_{\text{см}})$  и ТКН стабилитрона.

Делитель напряжения R1R2 в типовом нелинейном звене (см. рис. 2) применяется в случаях, когда и напряжение питания  $\pm U_{\text{пит}}$  (на схеме не показано), и напряжение стабилизации стабилитрона  $\pm U_{\text{ст}}$  имеют относительно высокие значения — до  $\pm 15$  В и  $\pm (7-9)$  В соответственно, а опорное напряжение  $\pm U_{\text{оп}}$  должно иметь значение 1—5 В. При наличии низковольтного стабилитрона делитель напряжения R1R2 из схемы можно исключить. В этом случае значение отклонения опорного напряжения  $\Delta(U^*_{\text{оп}})$  будет определяться из выражения (6) без условий, предъявляемых к делителю напряжения R1R2.

Таким образом, для снижения погрешности измерений необходимо применять высокостабильные радиоэлементы, а также использовать схемотехнические решения как в линейном усилителе-преобразователе, так и в нелинейном звене, направленные на снижение их общего числа.

### СПИСОК ЛИТЕРАТУРЫ

- 1. *Лучко С. В., Ватутин М. А.* Компенсационный акселерометр в режиме автоколебаний // Изв. вузов. Приборостроение. 2005. Т. 48, № 6. С. 62.
- 2. Бесекерский В. А., Попов Е. П. Теория систем автоматического регулирования. М.: Наука, 1975.
- 3. Основы метрологии и электрические измерения / Под ред. Е. М. Душина. Л.: Энергоатомиздат, 1987.

- 4. Операционные усилители и компараторы. Справочник. Т. 12. М.: Изд. дом "Додэка-ХХІ", 2001.
- 5. Гитцевич А. Б., Зайцев А. А., Мокряков В. В. и др. Полупроводниковые приборы. Диоды выпрямительные, стабилитроны, тиристоры: Справочник. М.: КУбК-а, 1994. 528 с.
- 6. Дубровский В. В., Иванов Д. М., Пратусевич Н. Я. и др. Резисторы: Справочник. М.: Радио и связь, 1991. 528 с.

#### Сведения об авторах

| Сергей Викторович Лучко | <br>д-р техн. наук, профессор; Военно-космическая академия им. А. Ф. Мо- |
|-------------------------|--------------------------------------------------------------------------|
|                         | жайского, кафедра бортовых информационных и измерительных ком-           |
|                         | плексов. Санкт-Петербург                                                 |

Сергей Юрьевич Балуев
канд. техн. наук, доцент; Военно-космическая академия им. А. Ф. Можайского, кафедра бортовых информационных и измерительных комплексов, Санкт-Петербург

**Михаил Алексеевич Ватутин** — канд. техн. наук, доцент; Военно-космическая академия им. А. Ф. Можайского, кафедра бортовых информационных и измерительных комплексов, Санкт-Петербург

— канд. техн. наук, доцент; Военно-космическая академия им. А. Ф. Можайского, кафедра автономных испытаний, Санкт-Петербург

1-й ГИК, Архангельская обл., г. Мирный; старший инженер-испытатель
Военный институт (научно-исследовательский) Военно-космической академии им. А.Ф. Можайского, Санкт-Петербург; старший научный сотрудник

Рекомендована кафедрой бортовых информационных и измерительных комплексов

Юрий Алексеевич Кузьмичев

Алексей Игоревич Ключников

Виталий Петрович Ефимов

Поступила в редакцию 12.02.13 г.