ПРИБОРЫ И СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ

УДК 527.62:523.2+623.466.33

Т.В.Данилова

АВТОНОМНЫЙ МЕТОД ОПРЕДЕЛЕНИЯ ОЦЕНОК ПАРАМЕТРОВ ОРБИТЫ И ОРИЕНТАЦИИ КОСМИЧЕСКОГО АППАРАТА ПРИ ОТСУТСТВИИ АПРИОРНОЙ ИНФОРМАЦИИ

Предлагается метод определения оценок параметров орбиты и ориентации космического аппарата относительно осей подвижной орбитальной системы координат на основе анализа годографов его осей, сформированных в результате астроизмерений оптико-электронным прибором, жестко закрепленным на корпусе аппарата под известными углами.

Ключевые слова: автономная навигация и ориентация, астроизмерения, годограф оси, оптико-электронный прибор, распознавание звезд.

Предлагается метод автономного определения приблизительных оценок всех неизвестных оскулирующих элементов (ОЭ) орбиты — большой полуоси (*a*), эксцентриситета (*e*), наклонения плоскости орбиты (*i*), аргумента восходящего узла (Ω), аргумента перигея (ω) и истинной аномалии (θ), а также параметров ориентации корпуса космического аппарата (КА) относительно осей текущей орбитальной системы координат (ТОСК) на основе анализа годографов осей КА. Годографы на всем мерном интервале формируются в результате измерений звездных величин и координат звезд, наблюдаемых в поле зрения оптико-электронного прибора (ОЭП), и последующего их распознавания [1].

Под годографом оси КА понимается массив ортов системы координат $X_{cB} Y_{cB} Z_{cB}$, связанной с корпусом КА (связанная система координат — ССК). Ось X_{cB} (продольная) ориентирована по трансверсали (ось T ТОСК), ось Z_{cB} (боковая) — по радиус-вектору (ось S ТОСК), ось Y_{cB} (также боковая), дополняющая систему до правой, — по бинормали к плоскости орбиты (ось W ТОСК) [2, 3]. Степень расхождения соответствующих осей ССК и ТОСК определяется погрешностями системы стабилизации.

Рассматриваемый метод разработан при следующих условиях. Во-первых, предполагается, что корпус КА, находящегося в состоянии орбитального полета, стабилизирован относительно осей ТОСК с некоторой постоянной или меняющейся в малом диапазоне погрешностью. Эта погрешность может достигать 10—15°. Во-вторых, на корпусе КА жестко закреплены qОЭП под известными углами λ_i , ρ_i , где λ_i — угол в плоскости $X_{\rm CB}$ $Y_{\rm CB}$, отсчитываемый от оси $X_{\rm CB}$, ρ_i — угол в плоскости $X_{\rm CB}$ $Z_{\rm CB}$, отсчитываемый от оси $X_{\rm CB}$, i = 1, 2, ..., q, $q \ge 1$.

Задача определения оценок параметров орбиты и ориентации КА может быть решена в одном из двух режимов:

— режим 1, когда оптические оси двух ОЭП совпадают с осями КА (для ОЭП 1 $\lambda_1 = 0$, $\rho_1 = 90^\circ$; для ОЭП 2 $\lambda_2 = 90^\circ$, $\rho_2 = 0$);

— режим 2, когда один ОЭП закреплен на корпусе под произвольными углами, при этом орты осей КА рассчитываются через орты осей приборной системы координат (ПСК) [1].

Режим 1 обеспечивает более точный расчет параметров ориентации КА в геоцентрической экваториальной инерциальной системе координат (ГЭИСК), но режим 2, как менее требовательный к количеству измерителей и углам их закрепления, предпочтительней.

Орты осей ССК, составляющие годографы, рассчитываются на основе распознавания и последующего анализа звездного поля, наблюдаемого в ОЭП [1]. Для решения задачи используются годографы осей Y_{cB} и Z_{cB} (соответственно годографы W и S).

Алгоритм расчетов заключается в следующем: выбирается момент времени t_1 , для которого будут выработаны оценки ОЭ и который принимается за начало мерного интервала (начало витка), от этого момента ведется относительный отсчет времени. Измерения производятся через равные промежутки времени, с установленным шагом dt.

Формирование годографов, фиксирование конца витка. На каждом измерительном сеансе с номером *j* в момент времени t_j , $t_j = t_1 + (j-1)dt$, j = 1, 2, 3, ..., каждым из задействованных ОЭП измеряются звездные величины и приборные координаты звезд, находящихся в поле зрения прибора. После этого производится распознавание звезд и определяется ориентация осей ОЭП в ГЭИСК [1]. В режиме 1 орты оптических осей ОЭП 1 и ОЭП 2 (ζ_{1j} и ζ_{2j}) являются ортами осей Z_{cB} и Y_{cB} (обозначим их как \mathbf{c}_{1j} и \mathbf{c}_{2j} соответственно), т.е. $\mathbf{c}_{1j} = \zeta_{1j}$ и $\mathbf{c}_{2j} = \zeta_{2j}$; в режиме 2 векторы \mathbf{c}_{1j} и \mathbf{c}_{2j} рассчитываются через орты осей ПСК и углы закрепления ОЭП [1]. Таким образом формируются годографы *S* и *W*, элементами которых являются векторы \mathbf{c}_{1j} и \mathbf{c}_{2j} , относящиеся к моментам времени t_j .

Пусть угол между начальным и текущим положениями направления оси Z_{св}

$$\varphi_j = \arccos(\mathbf{c}_{11}, \mathbf{c}_{1j}). \tag{1}$$

Очевидно, что на первой половине витка этот угол увеличивается, а на второй уменьшается. Измерения заканчиваются в момент t_2 , когда угол φ_j уменьшается и достигает своего минимума, т.е. выполняется условие

$$\varphi_j > \varphi_{j-1}, \tag{2}$$

при этом можно сделать вывод о завершении витка.

Обозначим через N номер сеанса, на котором выполняется условие (2), тогда $t_2=t_N$. Время $T = t_2 - t_1$ принимается в качестве начальной оценки периода орбиты, которая впоследствии уточняется.

Оценки параметров ориентации плоскости орбиты. Оценки наклонения плоскости орбиты (*i*) и аргумента восходящего узла (Ω) однозначно определяются вектором нормали **n** к плоскости орбиты, который определяется на основе анализа годографа *W*. В идеальном случае, при нулевых погрешностях системы стабилизации, элементы годографа *W* практически идентичны на всех измерительных сеансах и совпадают с искомым вектором **n**.

В реальных условиях, при наличии постоянных или изменяющихся в малом диапазоне погрешностей стабилизации, орт оси Z_{cB} описывает конус, направление в центр основания которого и есть искомый вектор нормали, а годограф W представляет собой замкнутую кривую, близкую к окружности с центром α_0 , δ_0 (где α — прямое восхождение, δ — склонение). При постоянных погрешностях системы стабилизации центр этой окружности может быть определен как среднее наименьшего и наибольшего значений соответствующих

координат, а при вариации погрешностей — через метод наименьших квадратов — как центр окружности, наилучшим образом аппроксимирующей линию годографа *W*. При этом нормаль $\mathbf{n} = (n_1, n_2, n_3) = (\cos \delta_0 \cos \alpha_0, \cos \delta_0 \sin \alpha_0, \sin \delta_0).$

Примеры построения годографа оси Z_{cB} приведены на рис. 1, где контур A получен при погрешностях системы стабилизации по углам тангажа, рыскания и крена, равных 0,1°; контур B — то же, при 3,0°; контур C — то же, при 10,0°.

Наклонение орбиты равно углу между нормалью **n** и осью $Z \Gamma \Theta UCK$, т.е. $i = \arccos n_3$. Направление в точку восходящего узла определяется векторным произведением

$$\mathbf{c}_{\Omega} = \mathbf{k} \cdot \mathbf{n} \,, \tag{3}$$

где **k** — орт оси *Z*, **k** =(0,0,1).

Алгоритм расчета величин *i* и Ω , а также аргумента перигея ω и истинной аномалии θ иллюстрируется рис. 2, здесь \mathbf{c}_P — единичный вектор, направленный в точку перигея; \mathbf{c}_{Ω} — единичный вектор, направленный в точку восходящего узла.

Оценки периода и большой полуоси орбиты. Уточнение периода поясним рис. 3, где представлены два возможных варианта взаимного расположения векторов c_{11} , c_{1N-1} и **n**.

Если смешанное произведение этих векторов $u = [\mathbf{n} \mathbf{c}_{1N-1} \mathbf{c}_{11}] < 0$, то имеет место вариант А, в противном случае — вариант Б. При варианте Б полагается T = T - dt, а N = N - 1.

Далее, для обоих вариантов положим $\Delta t = \frac{\phi_N}{\phi_{N-1} + \phi_N} dt$, где углы ϕ_N и ϕ_{N-1} определены

в уравнении (1), и получим следующее уточнение оценки периода: $T = T - \Delta t$, после чего известным образом определяется приблизительное значение большой полуоси:

$$a \approx \left(\sqrt[3]{\frac{\mu T}{2\pi}} \right)^2.$$

Оценка эксцентриситета орбиты. Оценка эксцентриситета рассчитывается из соотношения наименьшего и наибольшего углов между соседними элементами годографа *S*:

$$\beta_j = \arccos\left(\mathbf{c}_{1j-1}, \mathbf{c}_{1j}\right), \quad j=1, \dots, N.$$
(4)

Наименьший (β') и наибольший (β") углы, "описываемые" осью Z_{св} за равные промежутки времени, соответственно равны

$$\beta' = \min_{j} \beta_{j}, \ \beta'' = \max_{j} \beta_{j}.$$
(5)

В силу того что измерительные сеансы проводились через равные интервалы времени, радиус-вектор орбиты описывает в течение этих интервалов и равные площади (второй закон Кеплера). Аналогичное заключение справедливо (с некоторой погрешностью) и в отношении оси Z_{cB} (вектор \mathbf{c}_{1j}), ориентированной по оси *S* ТОСК с погрешностью, определяемой функционированием системы стабилизации.

На рис. 4 схематично представлено положение вектора \mathbf{c}_{1j} в идеальном случае, при малых погрешностях. Направляющие векторы прямых *AB*, *AC*, *AD* и *AE* — есть положения вектора \mathbf{c}_{1j} , соответствующее областям перигея и апогея; при этом $\angle BAC = \beta''$ — наибольший, $\angle DAE = \beta'$ — наименьший.

Для эллипса справедливо равенство OA = ae, кроме того, согласно закону Кеплера $S_{\Delta ABC} \approx S_{\Delta ADE}$. (6)

Т. В. Данилова Если h_1 — высота ΔABC , h_2 — высота ΔADE , то из выражения (6) следует, что $h_1^2 tg(\beta''/2) \approx h_2^2 tg(\beta'/2);$ отсюда

$$b \approx \frac{h_1}{h_2} = \sqrt{\frac{\operatorname{tg}(\beta'/2)}{\operatorname{tg}(\beta''/2)}}.$$
(7)

Так как $\beta' < \beta''$, то 0 < b < 1. Исходя из свойств эллипса

$$h_1 + h_2 = 2a;$$

 $h_2 - h_1 = 2ae, \int$

отсюда $e = \frac{1-b}{1+b}$, где *b* определено согласно выражению (7).

Оценки аргумента перигея и истинной аномалии орбиты. Пусть максимум угла β_i , определенного в выражении (4), достигается при j = j', при этом в качестве начальной оценки направления в точку перигея принимается вектор

$$\mathbf{c}_{P} = \frac{p_{2}}{p_{1} + p_{2}} \mathbf{c}_{1j'-1} + \frac{p_{1}}{p_{1} + p_{2}} \mathbf{c}_{1j'},$$

где $p_{1} = \operatorname{tg}\left(\frac{\beta'' - \beta_{j'-1}}{2}\right), \ p_{2} = \operatorname{tg}\left(\frac{\beta'' - \beta_{j'+1}}{2}\right), \text{ угол } \beta''$ определен в выражении (5).

Вектор c_P для орбит с эксцентриситетом e > 0,1 уточняется путем формирования аппроксимирующего полинома третьей степени $f(t) = at^3 + bt^2 + ct + d$, минимизирущего сумму квадратов невязок $F(a,b,c,d) = \sum_{j=1,N} (f(t) - \beta_j)^2$. Из условия

$$F'_{a} = 0$$

$$F'_{b} = 0$$

$$F'_{c} = 0$$

$$F'_{d} = 0$$

определяются коэффициенты полинома, время прохождения перигея определяется как точка максимума f(t).

Применение аппроксимации для околокруговых орбит не приносит положительного эффекта, и поэтому аппроксимация не производится.

Оценка аргумента перигея формируется как угол между векторами, направленными в точку восходящего узла и в точку перигея (см. рис. 2), т.е.

$$\omega = \arccos(\mathbf{c}_{\Omega}, \mathbf{c}_{P}).$$

Оценка истинной аномалии зависит от момента времени t_j , в который этот параметр формируется, и рассчитывается как функция F_{θ} вектора \mathbf{c}_{1i} и вектора \mathbf{c}_{P} , т.е. $\theta_i = F_{\theta}(\mathbf{c}_{1i}, \mathbf{c}_P)$. Функция F_{θ} определяется следующим образом:

1) первоначально полагается

$$\theta_{i} = \arccos\left(\mathbf{c}_{i1}, \mathbf{c}_{P}\right); \tag{8}$$

2) далее рассчитывается смешанное произведение векторов

$$s = [\mathbf{n} \, \mathbf{c}_P \, \mathbf{c}_{1\,i}]; \tag{9}$$

3) оценка истинной аномалии уточняется в зависимости от знака s:

$$\theta_i = 360 - \theta_i \text{ при } s < 0. \tag{10}$$

Для определяемой точки орбиты (начало витка, $t = t_1$) полагаем $\theta = \theta_1 = F_{\theta}(\mathbf{c}_{11}, \mathbf{c}_P)$, для конечной точки мерного интервала $\theta = \theta_N = F_{\theta}(\mathbf{c}_{1N}, \mathbf{c}_P)$.

Уточнение оценок аргумента перигея и истинной аномалии на основе формирования оценок погрешностей системы стабилизации. Точность оценок ω и θ значительно ухудшается с ростом погрешностей стабилизации. Для нивелирования этого эффекта разработан итеративный алгоритм. Прежде всего, известным образом по сформированным оскулирующим элементам определяемой точки орбиты рассчитывается ее радиус-вектор **R** и вектор скорости **V** [2, 3]. Далее выполняются следующие действия.

Шаг 1. Расчет оценок погрешностей стабилизации. На каждой точке мерного интервала (j = 1, ..., N) формируются матрицы перехода G_j (из ГЭИСК в ССК) и H_j (из ГЭИСК в ТОСК): строки матрицы G_j состоят из ортов осей ССК в ГЭИСК, при этом орты осей Z_{cB} и Y_{cB} — элементы годографов S и W соответственно (векторы \mathbf{c}_{1j} и \mathbf{c}_{2j}), а орт оси X_{cB} — их векторное произведение; матрица H_j известным образом [2, 3] определяется через наклонение i, аргумент восходящего узла Ω , аргумент перигея ω и истинную аномалию θ , при этом оценки первых трех углов сформированы и полагаются одинаковыми для всех j, а истинная аномалия для каждого j рассчитывается через вектор \mathbf{c}_{1j} согласно выражениям (8)—(10). В силу того что изменяемым параметром при расчете матрицы H_j является истинная аномалия θ , обозначим

$$H_{j} = H(\theta_{j}). \tag{11}$$

Из условия $G_j = B_j H_j$, где B_j — матрица перехода из ТОСК в ССК, получаем $B_j = G_j H_j^T$. С другой стороны, элементы матрицы B_j могут быть выражены через углы тангажа (ϑ_j), рыскания (ψ_j) и крена (γ_j) [2, 3]:

$$B_{j} = \begin{vmatrix} -\sin \vartheta_{j} \cos \psi_{j} & \cos \vartheta_{j} \cos \psi_{j} & \sin \psi_{j} \\ \cos \vartheta_{j} \sin \gamma_{j} + \sin \vartheta_{j} \sin \psi_{j} \cos \gamma_{j} & \sin \vartheta_{j} \sin \gamma_{j} - \cos \vartheta_{j} \sin \psi_{j} \cos \gamma_{j} & \cos \psi_{j} \cos \gamma_{j} \\ \cos \vartheta_{j} \cos \gamma_{j} - \sin \vartheta_{j} \sin \psi_{j} \sin \gamma_{j} & \sin \vartheta_{j} \cos \gamma_{j} + \cos \vartheta_{j} \sin \psi_{j} \sin \gamma_{j} & -\cos \psi_{j} \sin \gamma_{j} \end{vmatrix}.$$

Отсюда рассчитываются ϑ_j , ψ_j и γ_j , например, $\psi_j = \arcsin\left(\left(B_j\right)_{1,3}\right)$. Окончательные

оценки углов ϑ , ψ и γ на всем мерном интервале рассчитываются как сглаженные по методу наименьших квадратов текущие значения ϑ_j , ψ_j и γ_j [2, 3].

Шаг 2. Расчет матрицы поворота вокруг осей ТОСК. С использованием полученных значений углов ϑ , ψ и γ рассчитывается матрица поворотов M_R на противоположные углы $(-\vartheta, -\psi u - \gamma)$ в целях виртуального приближения оси $Z_{\rm cB}$ к оси S:

$$M_{R} = \begin{vmatrix} \cos 9 \cos \gamma - \sin 9 \sin \psi \sin \gamma & \sin 9 \cos \gamma + \cos 9 \sin \psi \sin \gamma & -\cos \psi \sin \gamma \\ -\sin 9 \cos \psi & \cos 9 \cos \psi & \sin \psi \\ \cos 9 \sin \gamma + \sin 9 \sin \psi \cos \gamma & \sin 9 \sin \gamma - \cos 9 \sin \psi \cos \gamma & \cos \psi \cos \gamma \end{vmatrix}.$$

Шаг 3. Поворот векторов \mathbf{c}_P , \mathbf{c}_{11} , \mathbf{c}_{1N} . Над каждым из векторов \mathbf{c}_P , \mathbf{c}_{11} , \mathbf{c}_{1N} производится операция, в результате которой формируются их новые значения:

$$\mathbf{c}_{P,\text{New}} = H_0^T M_R H_0 \mathbf{c}_P; \ \mathbf{c}_{11,\text{New}} = H_1^T M_R H_1 \mathbf{c}_{11}; \ \mathbf{c}_{1N,\text{New}} = H_N^T M_R H_N \mathbf{c}_{1N},$$

где матрица H_j определена в выражении (11), для точки перигея полагается $H_0 = H(0)$.

Шаг 4. Уточнение аргумента перигея и истинной аномалии:

 $\omega_{\text{New}} = \arccos(\mathbf{c}_{\Omega}, \mathbf{c}_{P,\text{New}}), \quad \theta_{\text{New}} = \theta_1 = F(\mathbf{c}_{11,\text{New}}, \mathbf{c}_{P,\text{New}}).$

Дополнительно определяется $\theta_N = F(\mathbf{c}_{1N,\text{New}}, \mathbf{c}_{P,\text{New}})$.

Шаг 5. Расчет поправок. Рассчитываются радиус-вектор \mathbf{R}_{New} и вектор скорости \mathbf{V}_{New} в предположении $\omega = \omega_{\text{New}}$, $\theta = \theta_{\text{New}}$, а также поправки $\Delta R = |\mathbf{R} - \mathbf{R}_{\text{New}}|$, $\Delta V = |\mathbf{V} - \mathbf{V}_{\text{New}}|$. Если $\Delta R < \varepsilon_R$ и $\Delta V < \varepsilon_V$ (ε_R , ε_V — малые числа), то итеративный процесс завершается, в противном случае повторяются шаги 1—5.

Опыт моделирования показал, что, во-первых, применение рассмотренного итеративного алгоритма позволяет повысить точность определения орбиты в несколько раз, а во-вторых, алгоритм сходится, и количество итераций обычно не превышает 10.

Количественными характеристиками точности определения орбиты являются $dR = |\mathbf{R}_{\rm p} - \mathbf{R}_{\rm \phi}|$ и $dV = |\mathbf{V}_{\rm p} - \mathbf{V}_{\rm \phi}|$, где $\mathbf{R}_{\rm p}$ и $\mathbf{V}_{\rm p}$ — радиус-вектор и вектор скорости в определяемой (рассчитываемой) точке орбиты, $\mathbf{R}_{\rm \phi}$ и $\mathbf{V}_{\rm \phi}$ — радиус-вектор и вектор скорости в начальной точке мерного интервала фактической орбиты, последняя задается в исходных данных задачи и применяется для моделирования измерений.

Моделирование проводилось в режиме 2 при постоянных погрешностях стабилизации (до 15° по каждому из углов: тангаж, рыскание и крен), погрешности ОЭП от 0,1 до 30" и шаге между измерительными сеансами от 150 до 500 с. При этом число измерительных сеансов в зависимости от орбиты составляло от нескольких десятков до нескольких сотен.

В таблице приведены результаты моделирования подсистемы автономной навигации на основе разработанного метода для различных орбит и погрешностей системы стабилизации при среднеквадратической погрешности измерений 0,5" и шаге измерений 300 с.

Определяе-	Фактичес-	Фактические погрешности системы стабилизации (9; ψ ; γ ,°)						
мые параметры	кая орбита	0; 0; 0	1; 1; 1	3; 3; 3	5; 5; 5	10; 10; 10	15; 15; 15	
а	6780	6796,178	6796,170	6796,212	6796,208	6796,244	6796,270	
е	0,01	0,011	0,010	0,011	0,011	0,011	0,011	
i	85	85,002	85,003	85,005	85,003	85,006	84,996	
Ω	120	119,977	119,975	119,988	119,988	119,967	119,981	
ω	10	17,860	20,575	20,257	20,257	17,324	18,679	
θ	80	72,143	70,222	72,567	72,567	72,013	69,403	
dR		6,000	94,066	168,960	333,586	78,859	226,825	
dV		3,990	106,760	191,593	377,108	90,472	257,381	
$\Delta \vartheta$		0,023	2861,823	5139,055	10156,060	2338,726	6491,062	
$\Delta \psi$		27,937	2,788	3,749	6,552	5,170	9,684	
$\Delta \gamma$		25,349	22,866	22,492	22,258	22,639	22,825	
а	7378	7388,272	7388,289	7388,302	7388,312	7388,366	7388,367	
е	0,01	0,010	0,010	0,010	0,010	0,010	0,010	
i	85	85,002	85,003	85,004	84,994	85,009	84,996	
Ω	45	44,980	44,986	44,985	44,987	44,974	44,993	
ω	20	25,242	25,366	26,325	25,361	26,123	23,493	
θ	100	94,759	95,201	94,737	96,120	93,249	93,243	
dR		3,507	73,169	136,788	190,945	81,307	421,018	
dV		3,910	75,186	138,200	192,296	78,556	415,675	
$\Delta \vartheta$		0,023	2035,873	3811,885	5326,479	2153,942	11035,158	
Δψ		24,835	11,379	11,458	13,847	12,067	16,350	
$\Delta \gamma$		23,405	16,300	15,756	16,285	15,398	12,789	

0	Φ								
Определяе-	Фактичес-	Фактические погрешности системы стабилизации ($\vartheta; \psi; \gamma,^{\circ}$)							
параметры	кая орбита	0; 0; 0	1; 1; 1	3; 3; 3	5; 5; 5	10; 10; 10	15; 15; 15		
а	25478	25480,749	25480,774	25480,837	25480,818	25480,900	25480,939		
е	0,01	0,010	0,010	0,010	0,010	0,010	0,010		
i	63	63,001	63,001	63,001	63,001	63,000	63,002		
Ω	0	359,991	359,991	359,990	359,990	359,992	359,990		
ω	20	20,979	16,576	22,630	24,812	18,119	22,336		
θ	70	69,025	74,121	68,648	66,369	71,580	66,381		
dR		2,564	307,716	564,271	521,282	135,531	570,728		
dV		0,840	46,675	88,090	82,024	22,044	88,775		
$\Delta \vartheta$		0,171	2494,113	4583,133	4234,567	1020,494	4205,770		
$\Delta \psi$		9,279	0,145	0,007	0,633	1,207	1,840		
$\Delta \gamma$		8,831	8,606	8,490	8,859	8,705	8,879		
а	29000	29013,428	29013,429	29013,457	29013,476	29013,510	29013,537		
е	0,75	0,751	0,751	0,751	0,751	0,751	0,751		
i	63	63,005	63,004	63,004	63,006	63,004	63,020		
Ω	0	9,966	9,980	9,976	9,968	9,933	9,872		
ω	40	39,886	40,192	39,467	40,985	41,733	37,812		
θ	85	85,130	85,131	85,133	85,135	85,075	84,966		
dR		9,541	65,520	85,825	229,917	369,504	474,157		
dV		11,063	30,689	62,269	131,302	219,766	291,963		
$\Delta \vartheta$		0,083	1125,230	1484,515	3950,626	5446,038	8539,232		
$\Delta \psi$		52,636	25,395	33,395	42,869	115,116	216,787		
Δγ		62,750	26,591	34,007	49,589	96,044	212,305		
а	42400	42397,905	42398,022	42397,974	42397,934	42397,968	42397,857		
е	0,01	0,010	0,010	0,010	0,010	0,010	0,010		
i	0,01	0,009	0,009	0,009	0,009	0,010	0,009		
Ω	0	3,198	0,094	1,039	0,648	4,220	4,821		
ω	70	63,590	61,221	71,571	62,917	72,682	69,960		
θ	90	93,212	99,738	89,544	99,439	87,188	89,579		
dR		21,982	783,321	1593,673	2225,894	3024,949	3225,699		
dV		1,756	55,732	114,372	160,394	218,547	232,434		
$\Delta \vartheta$		0,001	3109,282	7752,554	10819,721	14788,638	16138,712		
Δψ		1,367	0,551	0,317	0,562	0,600	0,591		
Δγ		1,566	1,126	1,124	1,258	1,112	1,151		
а	27800	27753,026	27753,028	27753,019	27749,603	27749,593	27749,523		
е	0,75	0,751	0,751	0,751	0,750	0,750	0,750		
i	0,01	0,010	0,009	0,011	0,013	0,046	0,012		
Ω	120	0,000	0,000	0,000	0,000	0,000	0,000		
ω	60	60,099	60,417	59,758	60,497	58,365	56,101		
θ	60	59,900	59,903	59,903	59,995	59,974	59,783		
dR		43,706	64,497	66,247	77,084	256,931	635,218		
dV		24,607	57,537	52,515	75,625	251,382	613,992		
$\Delta \vartheta$		0,001	1150,473	1219,514	1758,297	6017,102	14840,379		
Δψ		1,328	1,608	1,528	3,004	33,708	0,806		
Δγ		0,997	2,055	3,294	6,895	90,974	4,205		

Продолжение таблицы

Примечание. Параметр *а* измеряется в километрах; параметры *i*, Ω , ω , θ — в градусах; dR — в километрах; dV — в метрах в секунду; $\Delta \vartheta$, $\Delta \psi$, $\Delta \gamma$ — в угловых секундах.

Представленные в таблице оценки использовались в качестве априорных данных при решении задачи навигации и ориентации методом виртуальных измерений зенитных расстояний звезд [4, 5]. Точность решения задачи согласуется с точностью, полученной при произвольном назначении априорных данных, как правило, близких к фактической орбите.

Таким образом, точность выработанных с использованием предложенного метода приблизительных оценок параметров орбиты и ориентации корпуса КА достаточна для того, чтобы принять их в качестве опорных значений и тем самым восстановить функционирование системы автономной навигации и ориентации в нештатных ситуациях, связанных с отсутствием данных об орбите.

СПИСОК ЛИТЕРАТУРЫ

- 1. Данилова Т. В., Арихипова М. А. Определение ориентации космического аппарата в геоцентрической экваториальной системе координат на основе астроизмерений при отсутствии данных о параметрах орбиты // Изв. вузов. Приборостроение. 2013. Т. 56, № 7. С. 13—20.
- 2. *Кузнецов В. И., Данилова Т. В.* Автоматизированная система исследований методов и алгоритмов автономной навигации и ориентации космических аппаратов: Учеб. пособие. СПб: ВКА им. А. Ф. Можайского, 2006.
- 3. *Кузнецов В. И.* Автоматизированная система научных исследований методов и алгоритмов автономной навигации и ориентации космических аппаратов: Монография. СПб: ВКА им. А. Ф. Можайского, 2010.
- 4. Пат. 2454631. Способ автономной навигации и ориентации космических аппаратов на основе виртуальных измерений зенитных расстояний звезд / В. И. Кузнецов, Т. В. Данилова, Д. М. Косулин. 28 окт. 2010 г.
- 5. *Кузнецов В. И., Данилова Т. В.* Система автономной навигации и ориентации ИСЗ, основанная на виртуальных измерениях зенитных расстояний звезд // Космические исследования. 2011. Т. 49, № 6. С. 551—562.

Сведения об авторе канд. техн. наук; Военный институт Военно-космической академии

им. А. Ф. Можайского, Санкт-Петербург; E-mail: danitoma58@yandex.ru

Тамара Валентиновна Данилова

Рекомендована Военным институтом ВКА им. А. Ф. Можайского

Поступила в редакцию 18.06.13 г.

УДК 004.3

А. И. ПОСЯГИН, А. А. ЮЖАКОВ

САМОМАРШРУТИЗАЦИЯ СИГНАЛОВ В АНАЛОГО-ЦИФРОВОМ ПРЕОБРАЗОВАТЕЛЕ НА ОСНОВЕ НЕЙРОННОЙ СЕТИ

Рассматривается аналого-цифровой преобразователь на основе нейронной сети. Для предложенной структуры описываются принципы самомаршрутизации сигналов и образования индивидуальных аналого-цифровых преобразователей для каждого входного сигнала.

Ключевые слова: аналого-цифровой преобразователь, самомаршрутизация, нейронная сеть.

В настоящее время актуальность разработки аналого-цифровых преобразователей новых современных архитектур не вызывает сомнений. Наиболее важные проблемы при построении данных устройств — повышение точности, надежности и отказоустойчивости, а также умень-