ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)

vol 63 / September, 2020

DOI 10.17586/0021-3454-2015-58-11-927-933

UDC 004.001;004.001.57;


S. P. Dmitrieva
ITMO University, Department of Optical and Digital Systems and Technologies; Research Engineer

Read the full article 

Abstract. An analytical model is developed for multi-parameter technical system state assessment. The model allows monitoring of the system objective functions during its operation on the base of a posteriori information. The model construction calls for identification of basic and clarifying component varying degrees of detail at different levels, according to the principle of composition and decomposition of technical systems. Application of the analytical model to assessment of the state of a multi-parameter technical system considered in relation to complex hierarchical distributed multi-agent dynamic measuring systems to be designed in the framework of the project on construction of weather station complex.
Keywords: computer simulation, analytical model, predictive assessment of technical systems, algorithm, basic component, multi-parameter technical system

  1. Raysin K., Rice J., Dorman E., Matheny S. Proc. of Oceans Conf. Record, 1999, no. 2, pp. 747–752.
  2. Ahrens C.D. Essentials of Meteorology: An Invitation to the Atmosphere, Cengage Learning, 2011, 506 p.
  3. Söffker D., Xingguang Fu, Hasselberg A., Langer M. Intern. Journal of Information Technology and Web Engineering, 2012, no. 7, 121 p.
  4. Livingstone D.A. Practical Guide to Scientific Data Analysis, John Wiley&Sons, 2010, 358 p.
  5. Demin A. V., Koporskiy N. S. Imitatsionnoe modelirovanie informatsionno-izmeritel'nykh i upravlyayushchikh sistem (Simulation modeling of information-measuring and control systems), St. Petersburg, 2007, 138 р. (in Russ.)
  6. Arteta J., Marécal V., Rivière E.D. Atmospheric Chemistry and Physics, 2009, no. 9 (18), pp. 7081–7100.
  7. Demin A.V., Dmitrieva S.P. Izv. vuzov. Priborostroenie, 2015, no. 11(58), pp. 920–926. (in Russ.)  
  8. Eusgeld I., Kröger W. Proc. of the 9th Intern. Conf. on Probabilistic Safety Assessment and Management, 2008, no. 1, pp. 484–491.
  9. Vidal D., Zou X., Uesaka T. Tappi Journal, 2003, no. 4 (2), pp. 3–8.
  10. Jiang Z., Liu S., Dougal R.A. Proc. of the Conf. IEEE SOUTHEASTCON, 2002, pр. 113–120.
  11. Meliopoulos A.P., Cokkinides G., Beker B., Dougal R. Proc. of the 33rd Annual Hawaii Intern. Conf. on System Siences, 2000, pp. 95.
  12. Fu Z.J., Zhou X.D., Chen Y.Q., Gong J.H., Peng F., Yan Z.D., Zhang T.L., Yang L.Z. Communications in Nonlinear Science and Numerical Simulation, 2015, no. 3(20), pp. 832–845.
  13. Bonilla J., Dormido S.,Cellier F.E. Communications in Nonlinear Science and Numerical Simulation, 2015, no. 3(20), pp. 743–768.
  14. Demin A.V., Dmitrieva S.P. Trudy III Kongressa po intellektual'nym sistemam i informatsionnym tekhnologiyam „IS&IT 14“ (Proc. of the Intern. Conf. on Artificial Intelligence and Systems), Moscow, 2014, no. 3, pp. 289–294. (in Russ.)
  15. Dmitrieva S.P. Proc. of the IV Intern. Sci. Conf. “Science, Technology and Higher Education”, 2014, vol. 2, pp. 302–307, (in Russ.)
  16. Dmitrieva S.P. Proc. of the V Intern. Sci. Conf. “Science and Education”, 2014, no. 2, pp. 180–185, (in Russ.)