ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

10
Issue
vol 62 / November, 2019
Article

DOI 10.17586/0021-3454-2015-58-12-993-998

UDC 528.8:536.33

CONDITIONS FOR THERMAL SIMILARITY OF SPACE OBJECTS OF CONICAL AND CYLINDRICAL SHAPE

A. M. Dzitoev
Military Space Academy n.a. A.F. Mozhaisky, Saint Petersburg, Russia;


Y. V. Lapovok
Military Space Academy n.a. A.F. Mozhaisky, Saint Petersburg, Russia; scientific researcher


S. I. Khankov
Military Space Academy n.a. A.F. Mozhaisky, Saint Petersburg, Russia; chief staff scientist


Read the full article 

Abstract. A method is developed for calculating stationary temperature values for isothermal space objects of conical and cylindrical shape moving along circular orbits in the plane of the terminator or staying in the Earth shadow. Conditions for thermal similarity of conical and cylindrical objects are studied. It is shown that conical and cylindrical objects with equal relations of the radius of the basis to the height and half-angle at the cone vertex, β not exceeding 10о have equivalent thermal characteristics and close temperature values. Under the conditions, for orbits height of 600 – 40 000 km the temperatures of conical and cylindrical objects are close enough, the difference increases up to 3 K0 and over when β is more than 20о. The temperature of spherical object taken as a reference one is found to coincide with the temperature of conical and cylindrical object at the same conditions only at angles of cone and cylinder axes orientation are α = 40о and α = 140о on a solarconstant orbit at β =13о, and α = 60о and α = 120о correspondingly in the Earth shadow.
Keywords: space object, irradiation coefficient, thermal balance of objects in a near-earth space, the thermal radiation of the Earth, thermal similarity of space objects

References:

 

  1. Gilmore D.G. Spacecraft Thermal Control Handbook, El Segundo, CA, The Aerospace Press, 2002, 836 p.
  2. Al'tov V.V., Zaletaev S.V., Kopyatkevich R.M., Abrosimov A.I. Cosmonautics and Rocket Engineering, 2006, no. 3(44), pp. 144–149. (in Russ.)
  3. Furukawa M. J. Thermophysics, 1992, no. 1(6), pp. 173–177.
  4. Cullimore B., Panczak T., Baumann J., Genberg V., Kahan M. Society of Automotive Engineers, SAE 2002-01-2445, July, 2002.
  5. Bondarenko V.A., Ustinov S.N., Nemykin S.A., Finchenko V.S. Vestnik NPO im. S.A. Lavochkina, 2013, no. 3(19), pp. 37–42. (in Russ.)
  6. Baeva Yu.V., Lapovok E.V., Khankov S.I. Journal of Optical Technology, 2013, no. 5(80), pp. 30–37. (in Russ.)
  7. Baeva Yu.V., Lapovok E.V., Khankov S.I. Journal of Optical Technology, 2014, no. 1(81), pp. 17–24. (in Russ.)
  8. Baeva Yu.V., Lapovok E.V., Khankov S.I Journal of Instrument Engineering, 2013, no. 7(56), pp. 56–61. (in Russ.)
  9. Baeva Yu.V., Lapovok E.V., Khankov S.I. Journal of Instrument Engineering, 2013, no. 12 (56), pp. 51–56. (in Russ.)
  10. Baeva Yu.V., Lapovok E.V., Khankov S.I. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2013, no. 6(86), pp. 67–72. (in Russ.)
  11. Tulin D.V., Vinogradov I.S., Shabarchin A.F., Privezentsev A.S., Goncharov K.A. Cosmic Research, 2014, no. 5(52), pp. 423–428. (in Russ.)
  12. Dzitoev A.M., Lapovok E.V., Khankov S.I. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2014, no. 3(91), pp. 119–125. (in Russ.)
  13. Kamenev A.A., Lapovok E.V., Khankov S.I. Analiticheskie metody rascheta teplovykh rezhimov i kharakteristik sobstvennogo teplovogo izlucheniya ob"ektov v okolozemnom kosmicheskom prostranstve (Analytical Methods of Calculating the Thermal Conditions and Characteristics of the Natural Electromagnetic Radiation of Objects in Near-Earth Space), St. Petersburg, 2006, 186 р. (in Russ.)
  14. Trenberth K.E., Fasullo J.T., Keihl J. Bull. Amer. Meteor. Soc., 2009, no. 3(90), pp. 311–323.
  15. Dzitoev A.M., Khankov S.I. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2014, no. 2(90), pp. 130–136. (in Russ.)
  16. Dzitoev A.M., Khankov S.I. Journal of Optical Technology, 2015, no. 4(82), pp. 32–40. (in Russ.)