ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

1
Issue
vol 63 / January, 2020
Article

DOI 10.17586/0021-3454-2015-58-12-1008-1015

UDC 537.613

SIMULATING TRAJECTORIES OF HYDROGEN AND DEUTERIUM ATOMS IN POLARIZED SOURCES

A. A. Vasiliev
B. P. Konstantinov Petersburg Nuclear Physics Institute RAS; Department of Instruments and Methods of Polarization Measurements of St. Petersburg State University of Information Technologies, Mechanics and Optics; Head of Department


M. E. Vznuzdaev
B. P. Konstantinov Petersburg Nuclear Physics Institute RAS; Department of Instruments and Methods of Polarization Measurements of St. Petersburg State University of Information Technologies, Mechanics and Optics; Senior Scientist


S. S. Kiselev
Saint Petersburg National Research University of Information Technologies, Mechanics and Optics; Associate Professor


P. A. Kravtsov
B. P. Konstantinov Petersburg Nuclear Physics Institute RAS; Department of Instruments and Methods of Polarization Measurements of St. Petersburg State University of Information Technologies, Mechanics and Optics; Senior Scientist


K. A. Ivshin
Petersburg Nuclear Physics Institute; Junior Scientist


A. N. Solovyev
Petersburg Nuclear Physics Institute; Intern


I. N. Solovyev
Petersburg Nuclear Physics Institute; Intern


S. G. Sherman
Petersburg Nuclear Physics Institute; Senior Scientist


R. Engels
Institute of Nuclear Physics, Research Center Jülich; Senior Scientist


Read the full article 

Abstract. The international PolFusion experiment devoted to investigation of nuclear dd-fusion reaction with polarized initial particles is considered. A mathematical model of the polarized source is proposed to simulate high intensity polarized beams using calculation and optimization of the atomic trajectories in high-gradient magnetic fields. A significant achievement of the described model is calculation of three-dimensional trajectories instead of cylindrical two-dimensional calculations used in former models. Basic approaches used in the trajectories calculations are described, results of calculation carried out for ANKE ABS polarized source are presented as an illustration. An advantage of the three-dimensional approach is demonstrated.
Keywords: polarized nuclear fusion, atomic beam source, mathematical simulation of atomic beams, hydrogen, deuterium

References:

 

  1. Engels R, Grigoryev K., Kochenda L., Kravtsov P., Mikirtytchiants M., Rathmann F., Paetz gen. Schieck H., Ströher H., Trofimov V., Vasilyev A., Vznuzdaev M. Physics of Particles and Nuclei, 2014, no. 1(45), pp. 341–343.
  2. Terekhin S.N., Vasil'ev A.A., Vznuzdaev M.E., Voropaev N.I., Ivanov I.Yu., Kiselev S.S., Marusina M.Ya., Kravtsov P.A., Nadtochiy A.V., Trofimov V.A. Journal of Instrument Engineering, 2011, no. 7(54), pp. 62–67. (in Russ.)
  3. Gerlach W., Stern О. Z. Phys., 1922, no. 9, pp. 349–352.
  4. Dunham J.S., Galovich C.S., Glavish H.F., Hanna S.S., Mavis D.G., and Wissink S.W. Nucl. Instrum. Methods, 1984, no. 219, pp. 46.
  5. Krämer D. et al. Nucl. Instrum. Methods, 1984, no. 220, pp. 123.
  6.  Mikirtychyants M., Engels R., Grigoryev K., Kleines H., Kravtsov P., Lorenz S., Nekipelov M., Nelyubin V., Rathmann F., Sarkadi J., Paetz gen. Schieck H., Seyfarth H., Steffens E., Ströher H., Vasilyev A. Nucl. Instrum. Methods. A, 2013, no. 721, pp. 83–98.
  7. Korsch W. Ph.D.Thesis, Philipps Universität Marburg, unpublished, 1990.
  8. Sobol' I.M. Metod Monte-Karlo (Monte Carlo Method), Moscow, 1978. 64 р. (in Russ.)
  9. CERN Program Library, http://cernlib.web.cern.ch/cernlib/.
  10. ROOT. A data analysis framework, http://root.cern.ch.
  11. Forschungszentrum Jülich, http://www.fz-juelich.de.