ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

4
Issue
vol 67 / April, 2024
Article

DOI 10.17586/0021-3454-2016-59-4-317-322

UDC 536.2

DEPENDENCE OF THERMAL CONDUCTIVITY OF SILICONE-BASED COMPOSITE ON VOLUME CONCENTRATION OF BORON NITRIDE

V. A. Mikheev
BSTU “VOENMEH”; Graduate Student


V. S. Sulaberidze
BSTU “VOENMEH”;


V. D. Mushenko
STOLP Ltd.; General Director


Read the full article 

Abstract. Composite material on the base of silicon with boron nitride is considered. Special features of the composite thermal conductivity dependence on volume concentration of the filler are studied experimentally. The results show that at 20°С thermal conductivity changes by a factor of 2,5 from 1,46 W/(m·K) to 4,10 W/(m·K), when BN comprises ≈22 vol.%. An explanation for the obtained results is offered on the grounds of percolation theory and the impact of the filler dispersity on the effective thermal conductivity of the composite. The percolation effect appears to be the stronger, the higher is the difference between the studied characteristic of the filler and the binder; example of model system of paraffin + graphite is presented as an illustration. 
Keywords: thermal conductivity, composite material, filler, binder, BN, percolation threshold, percolation

References:
  1. Mikheev V.A., Sulaberidze V.Sh., Mushenko V.D. Izv. vuzov. Priborostroenie, 2015, no. 7 (58), pp. 167–172. (in Russ.)
  2. Dul'nev G.N., Zarichnyak Yu.P. Teploprovodnost' smesey i kompozitsionnykh materialov (Heat Conductivity of Mixes and Composite Materials), Leningrad, 1974. (in Russ.)
  3. Missenard A. Conductivité thermique des solides, liquides, gaz et de leurs mélanges, Editions Eyrolles, Paris, 1965.
  4. Abeliov Ya.L. Klei. Germetiki. Tekhnologii, 2005, no. 8, pp. 26–27. (in Russ.)
  5. Lebovka N.I., Lisetskiy L.N., Soskin M.S. et al. Modelirovanie fizicheskikh svoystv neuporyadochennykh sistem: samoorganizatsiya, kriticheskie i perkolyatsionnye yavleniya: materialy seminara (Modeling of Physical Properties of the Disorder Systems: Self-Organization, Critical and Percolation Phenomena), Proceedings of the Seminar, Astrakhan', 2011, рр. 5–22. (in Russ.)
  6. Kirillov V.N., Dubinker Yu.B. et al. Journal of Engineering Physics and Thermophysics, 1972, no. 3(ХХIII). (in Russ.)
  7. Sotskov V.A. Technical Physics, 2005, no. 9 (75), pp. 56–59. (in Russ.)
  8. Sotskov V.A., Karpenko S.V. Technical Physics, 2003, no. 1(73), pp. 106–109. (in Russ.)  
  9. Zhmurikov E.I. K voprosu o perkolyatsionnoy provodimosti geterogennykh mezoskopicheskikh sistem (To the Question about the Percolating Conduction of the Heterogeneous Mesoscopic Systems), Novosibirsk, Budker Institute of Nuclear Physics, 2005, no. 2005-18. (in Russ.)
  10. Abyzov A.M., Kidalov S.V., Shakhov F.M. Physics of the Solid State, 2011, no. 1 (53), pp. 48–51. (in Russ.)
  11. Sokolina G.A., Denisov S.A. 8-yа Mezhdunar. konf. "Uglerod: fundamental'nye problemy nauki, materialovedenie, tekhnologiya" (8th Intern. Conf. "Carbon: fundamental problems of science, materials science, technology"), Abstracts of Papers, Troitsk, Moscow region, September 25–28, 2012, рр. 456–457. (in Russ.)
  12. Shevchenko V.G. Osnovy fiziki polimernykh kompozitsionnykh materialov (The Basic Physics of Polymer Composite Materials), Moscow, 2010. (in Russ.)
  13. Zhirov S.G., Koptelov A.A., Milekhin Yu.M. Prikladnaya fizika, 2005, no. 4, pp. 39–43. (in Russ.)