ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

9
Issue
vol 67 / September, 2024
Article

DOI 10.17586/0021-3454-2016-59-5-370-376

UDC 631.3

EFFECTIVENESS OF REDUNDANT DATA TRANSMISSION OVER AGGREGATE CHANNELS

V. A. Bogatyrev
ITMO University, Saint Petersburg, 197101, Russian federation; Saint Petersburg State University of Aerospace Instrumentation, Saint Petersburg, 190000, Russian Federation; Professor; Professor


I. A. Slastikhin
ITMO University, Saint Petersburg, 197101, Russian Federation; Postgraduate


Read the full article 

Abstract. The possibility to improve efficiency of data exchange over redundant channel is analyzed for the case when the channel is used for request for transmission of data packets sensitive to delay of faultless delivery to the addressee. The effectiveness of redundant transmission of packet copies over several channels is considered to allow for compromise between decrease of average time of request processing and requirements for faultless transfer for a given time for systems with excluded feasibility of repeated packet sending due to delivery time limitation. The existence of optimal multiplicity of backup copies and an area of effectiveness of redundant data transfer over an aggregate channel are demonstrated on the base of additive and multiplicative criteria.
Keywords: network, reliability, sensitivity to delay of delivery, redundant data packets, packets, aggregate channel, data transfer

References:
  1. Sorin D. Fault Tolerant Computer Architecture, Morgan&Claypool, 2009, 103 p.
  2. Cherkesov G.N. Design and technology of electronic means (PTЕS), 2015, no. 1, pp. 15–24. (in Russ.)
  3. Shubinskiy I.B. Funktsional'naya nadezhnost' informatsionnykh sistem: metody analiza (Functional Reliability of Information Systems: Analysis Methods), Moscow, 2012, 296 р. (in Russ.)
  4. Gatchin Yu.A., Zharinov I.O., Korobeynikov A.G. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2012, no. 2(78), pp. 92–95. (in Russ.)
  5. Kolbanev M.O., Tatarnikova T.M., Vorob'ev A.I. Izv. vuzov. Priborostroenie, 2014, no. 9(57), pp. 15–18. (in Russ.)
  6. Aliev T.I. Rebezova M.I., Russ A.A. Automatic Control and Computer Sciences, 2015, no. 6(49), pp. 321–327. 
  7. Bogatyrev V.A. Automatic Control and Computer Sciences, 2000, no. 6(34), pp. 51–57.
  8. Bogatyrev V.A. Automatic Control and Computer Sciences, 1999, no. 1(33), pp. 57–63.
  9. Bogatyrev V.A., Osipov A.V., Bogatyrev S.V. et al. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2011, no. 2, pp. 171. (in Russ.)
  10. Lee M.H., Dudin A.N., Klimenok V.I. Math. Probl. in Engineer, 2006, article ID 98171.
  11. Bogatyrev V.A., Bogatyrev A.V. Information Technologies (Informacionnye Tehnologii), 2015, no. 7(21), pp. 495–502. (in Russ.)
  12. Bogatyrev V.A., Bogatyrev A.V., Bogatyrev S.V. Izv. vuzov. Priborostroenie, 2014, no. 9(57), pp. 54–58. (in Russ.)  
  13. Bogatyrev V.A., Bogatyrev A.V., Bogatyrev S.V. Izv. vuzov. Priborostroenie, 2014, no. 4(57), pp. 46–48. (in Russ.)  
  14. Bogatyrev V.A. Instruments and Systems: Monitoring, Control, and Diagnostics, 2006, no. 10, pp. 18–21. (in Russ.)  
  15. Bogatyrev V.A., Bogatyrev S.V., Bogatyrev A.V. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2011, no. 1(71), pp. 63–67. (in Russ.)
  16. Bogatyrev V.A. Engineering Simulation, 1999, no. 4(16), pp. 463–469.
  17. Bogatyrev V.A., Bogatyrev A.V. Automatic Control and Computer Sciences, 2015, no. 1(49), pp. 46–56. DOI 10.3103/S0146411615010022
  18. Ojiganov A.A. Measurement Techniques, 2015, no. 5(58), pp. 512–519.
  19. Galinina O., Mikhaylov K., Andreev S., Turlikov A., Koucheryavy Y. Eurasip Journal on Wireless Communications and Networking, 2015, no. 178, pp. 18.
  20. Utkin L.V. Analiz riskov i prinyatie resheniy pri nepolnoy informatsii (Risk Analysis and Decision-Making at Incomplete Information), St. Petersburg, 2007, 404 р. (in Russ.)