ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

9
Issue
vol 62 / September, 2019
Article

DOI 10.17586/0021-3454-2016-59-8-645-650

UDC 62-503.55: 539.3/.6: 004.93

METHOD FOR DETERMINATION OF PHYSICAL-MECHANICAL PARAMETERS OF ARAMID TORSIONS

A. D. Perechesova
ITMO University, Department of Mechatronics;


I. I. Kalapyshina
Saint Petersburg National Research University of Information Technologies, Mechanics and Optics; postgraduate


G. A. Solovieva
ITMO University; Department of Mechatronics; Post-Graduate Student


Read the full article 

Abstract. An algorithm of image recognition based on segmentation method with the use of Hough transform is proposed. The algorithm is created for development of optical-design method of evaluation of physical-mechanical characteristics of helical elements of helically-anisotropic torsion bar on the basis of tensile test experiments. Aramid fiber torsion is considered as a spirally anisotropic rod. A high-speed video camera CamRecord CR4503 Optronis is used in the study. Computer processing of images based on computer vision algorithms allows to determine the axes of elastically equivalent elements of the torsion and their deviation from the main axis. As a result of the algorithm angle of the elements inclination and variation of the angle in the process of deformation under the action of longitudinal force is determined. The obtained values are used for description of deformation process of spirally-anisotropic bodies, in particular when evaluating the changes of the shear modulus.
Keywords: segmentation method, Hough transform, image recognition, microfilament aramid fiber, spirally-anisotropic rod, torsion, tensile test experiment, high-speed camera

References:
  1. Perechesova A.D., Kalapyshina I.I., Kupriyanov D.V., Larionenko G.S., Makhmudova K.D. SPRAVOCHNIK. Inzhenernyi zhurnal (HANDBOOK. An Engineering journal with appendix), 2016, no. 3(228), pp. 49–54. DOI: 10.14489/hb.2016.03. 049–054. (in Russ.)
  2. Kopytenko Y.A., Sergushin P.A., Petrishchev M.S., Levanenko V.A., Zaytsev D.B. Key Engineering Materials, 2010, no. 437, pp. 621–624. DOI:10.4028/ www.scientific.net/KEM.437.621.
  3. Patent RU 2519888, D07B3/00, Ustroystvo dlya izgotovleniya torsionnykh podvesov chuvstvitel'nykh elementov priborov (Device for Production of the Torsion Suspensions of Sensitive Elements of Devices), Kopytenko Yu.A., Petrishchev M.S., Sergushin P.A., Levanenko V.A., Perechesova A.D., Priority 20.06.2014, Bull. 17.
  4. Perechesova A.D. Analiz i sintez mekhanizma dlya pleteniya torsionnykh podvesov priborov (Analysis and Synthesis of the Mechanism for Weaving the Torsion Suspension Devices), Candidate’s thesis, St. Petersburg, 2012.
  5. Kopytenko Y.A., Sergushin P.A., Petrishchev M.S., Levanenko V.A., Perechesova A.D. Key Engineering Materials, 2010, no. 437, pp. 625–628. DOI:10.4028/www.scientific.net/KEM.437.625.
  6. Perechosova A.D., Kalapyshina I.I., Nuzhdin K.A. Proc. of the 26th European Modeling and Simulation Symposium, EMSS 2014, 2014, рp. 128–135.
  7. Musalimov V.M., Zamoruev G.B., Perechesova A.D. Izv. vuzov. Priborostroenie, 2012, no. 6(55), pp. 24–30. (in Russ.)
  8. Perechesova A. Proc. of the 23rd International Congress of Theoretical and Applied Mechanics, Beijing (China), 2012, SM04–050.
  9. Certificate on the state registration of the computer programs № 2 2013616761, Programma „Parabola“ dlya rascheta fiziko-mekhanicheskikh kharakteristik vintovykh elementov spiral'no-anizotropnogo sterzhnya (Program "Parabola" for Calculating Physical-Mechanical Characteristics of the Helical Elements Helically Anisotropic Rod), Zamoruev G.B., Musalimov V.M., Perechesova A.D., Published 18.07.2013.
  10. Sun W., He X.-Y., Huang Y.-P., Xu Z.-B., Liu W.-W. Gongcheng Lixue/Engineering Mechanics, 2008, no. 6(25), pp. 88–93.
  11. Jajam K., Tippur H. SEM Annual Conference and Exposition on Experimental and Applied Mechanics, Albuquerque, NM, USA, June 1–4, 2009, 2009, no. 1, pp. 390–396.
  12. Zhu D., Mobasher B., Rajan S.D. Conf. Proc. of the Society for Experimental Mechanics Series, 2011, no. 1, pp. 147–152.
  13. Hlebová S., Ambriško L., Pešek L. Key Engineering Materials, 2014, no. 586, pp. 129–132. DOI: 10.4028/www.scientific.net/KEM.586.129.
  14. Xu Z., Hao H., Li H.N. Materials and Design, 2012, no. 42, pp. 72–88. DOI: 10.1016/j.matdes.2012.05.047.
  15. Duffner S., Odobez J.-M. Pattern Recognition, 2014, no. 6(47), pp. 2222–2230. DOI: 10.1016/j.patcog.2013.12.014.
  16. Dittmann М., Franke М., Temizer Т., Hesch C. Computer Methods in Applied Mechanics and Engineering, 2014, no. 274, pp. 192–212. DOI: 10.1016/j.cma.2014.02.012
  17. Perechesova A.D., Kalapyshina I.I. Instruments, 2014, no. 10(172), pp. 28–33. (in Russ.)
  18. Princen J.P., Illingworth J., Kittler J.V. J. of Mathematical Imaging and Vision, 1992, no. 1(1), pp. 153–168.
  19. Solov'eva G.A. Privolzhskiy nauchnyy vestnik, 2014, no. 9(37). (in Russ.)
  20. Gonzalez R.C., Woods R.E. Digital Image Processing, Prentice-Hall, 2002.
  21. Perechesova A.D., Soloveva G.A., Kalapyshina I.I. WSCG 2015 – Poster Papers Proc., 2015, рp. 91–94.