ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

8
Issue
vol 63 / August, 2020
Article

DOI 10.17586/0021-3454-2016-59-8-657-663

UDC 539.3

MODELING OF THE PROCESS OF WINDING THREADS ON A RIGID CYLINDER

V. M. Musalimov
ITMO University, Saint Petersburg, 197101, Russian Federation; Professor


Y. S. Monakhov
ITMO University, Department of Mechatronics; Senior Lecturer


A. Y. Kutin
VP Petro In Treid, LLC, Saint Petersburg, 194295, Russian Federation; Software Engineer


G. A. Solovieva
ITMO University; Department of Mechatronics; Post-Graduate Student


Read the full article 

Abstract. Principles of the theory of deformation of helically-anisotropic body as applied to determination of parameters characterizing the stress strain state of the body are presented. Examples of the theory application to cable constructions and other helically-anisotropic bodies are presented. A special attention is paid to modeling the process of layered structure formation during winding. The model accounts for relationship between the elastic modulus and Poisson's ratio of helically-anisotropic materials, physical, mechanical, and kinetic parameters of the yarn and winding system. The presented analysis of winding body state allows to optimize the process of winding yarn on a rigid base.
Keywords: helically-anisotropic rod, composite material, circumferential winding, yarn tension, elastic constants

References:
  1. Lekhnitskiy S.G. Kruchenie anizotropnykh i neodnorodnykh sterzhney (Torsion of Anisotropic and Inhomogeneous Rods), Moscow, 1971, 310 р. (in Russ.)
  2. Lekhnitskiy S.G. Teoriya uprugosti anizotropnogo tela (Theory of Elasticity of an Anisotropic Body), Moscow, 1977, 415 р. (in Russ.)
  3. Zhitkov P.N. Trudy Voronezhskogo gosudarstvennogo universiteta, 1954, no. 27, pp. 20–29. (in Russ.)
  4. Ambartsumyan S.A. Obshchaya teoriya anizotropnykh obolochek (General Theory of Anisotropic Covers), Moscow, 1974, 324 р. (in Russ.)
  5. Ashkenazi E.K. Anizotropiya mashinostroitel'nykh materialov (Anisotropy of Machine-Building Materials), Leningrad, 1969, 240 р. (in Russ.)
  6. Thwaits J.J. Intern. J. Mech., 1977, no. 3(19), pp. 161–169.
  7. Hearle J.W.S., Grosberg P., Backer S. Structural Mechanics of Fibres, Yarns and Fabrics, NY, Wiley-Interscience, 1969.
  8. Platt M.M. Textile Research Journal, 1950, no. 20, pp. 1–15.
  9. Treloar L.R.G. J. Textile Inst., 1965, no. 56, pp. T477–T488.
  10. Musalimov V.M., Mokryak S.Ya., Sokhanev B.V., Shiyanov V.D. Mekhanika kompozitnykh materialov (Mechanics of Composite Materials), 1984, no. 1, pp. 136–141. (in Russ.)
  11. Musalimov V.M. Mekhanika deformiruemogo kabelya (Mechanics of Deformable Cable), St. Petersburg, 2005, 203 р. (in Russ.)
  12. Perechesova A.D., Soloveva G.A., Kalapyshina I.I. Proc. WSCG 2015 (Poster Papers), 2015, pр. 72–75.
  13. Sergushin P.A. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2007, no. 37, pp. 333–338. (in Russ.)
  14. Sergushin P., Perechesova A., Petrishchev M. Proc. of ISMTII-2009, 29 June–2 July 2009, St. Petersburg, 2009, no. 4, pp. 411–414.
  15. Musalimov V.M., Zamoruev G.B., Perechesova A.D. Izv. vuzov. Priborostroenie, 2012, no. 6(55), pp. 24–30. (in Russ.)
  16. Perechesova A. Proc. of the 23rd Intern. Congress of Theoretical and Applied Mechanics, Beijing, China, 2012, SM04–050.
  17. Timoshenko S.P., Gud'er D. Teoriya uprugosti (Elasticity Theory), Moscow, 1975, 576 р. (in Russ.)