ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

12
Issue
vol 67 / December, 2024
Article

DOI 10.17586/0021-3454-2016-59-8-690-694

UDC 004.94

HUMAN GAIT MODELING IN MATLAB/SIMULINK

P. P. Kovalenko
ITMO University, Department of Mechatronics; Associate Professor


I. A. Ovchinnikov
ITMO University, Department of Mechatronics;; Student


T. M. Vu
Tallinn University of Technology, Department of Mechatronics; Professor


Read the full article 

Abstract. A model of a five-link mechanism imitating human lower limbs movements is developed with the use of MatLab/Simulink. Approximate trajectories of lower limbs aren calculated analytically using equations of dynamics and their subsequent simplification. The simulation is performed with the use of MPC controller that calculates the required forces using analytically defined trajectories.
Keywords: five-link mechanism, gait modeling, gait dynamics, trajectories of lower limbs movements, MPC controller

References:
  1. Gage J., Deluca P., Renshaw T. Journal of Bone and Joint Surgery, Ser. A, 1995, no. 10(77), pp. 1607–1623.
  2. McGeer T. J. of Theoretical Biology, 1993, no. 3(163), pp. 277–314.
  3. Vergallo P., Lay-Ekuakille A., Angelillo F., Gallo I., Trabacca A. Conf. Record, IEEE Instrumentation and Measurement Technology Conference, 2015, art. no. 7151587, рр. 1987–1990. DOI: 10.1109/I2MTC.2015.7151587.
  4. Luengas L. A., Camargo E., Sanchez G. Frontiers of Mechanical Engineering, 2005, no. 3(10), pp. 233–241. DOI: 10.1007/s11465-015-0343-0.
  5. Gill T., Keller J.M., Anderson D.T., Luke R. Applied Imagery Pattern Recognition Workshop (AIPR), 2011, рp. 1–8.
  6. Sun J. Dynamic Modeling of Human Gait Using a Model Predictive Control Approach, Milwaukee, USA, Marquette University, 2015.
  7. Ren L., Howard D., Kenney L. J. of Bionic Engineering, 2006, no. 3, pp. 127–138.
  8. Ren L., Jones R., Howard D. J. of Biomechanics, 2007, no. 7(40), pp. 1567–1574.
  9. Formal'skiy A.M. Peremeshchenie antropomorfnykh mekhanizmov (Displacement of Anthropomorphic Mechanisms), Moscow, 1982, 369 р. (in Russ.)
  10. Tertychnyy-Dauri V.Yu. Dinamika robototekhnicheskikh sistem (Dynamics of Robotic Systems), St. Petersburg, 2012, 128 р. (in Russ.)
  11. Pontzer H., Holloway J.H., Raichlen D.A., Lieberman D.E. J. of Experimental Biology, 2009, no. 212, pp. 523–534.
  12. Mohammed S., Samé A., Oukhellou L., Kong K., Huo W., Amirat Y. Robotics and Autonomous Systems, 2016, no. 75, pp. 50–59. DOI: 10.1016/j.robot.2014.10.012.
  13. Pappas I.P., Popovic M.R., Keller T., Dietz V., Morari M. IEEE Trans. Neural Syst. Rehabil. Eng., 2001, no. 2(9), pp. 113–125.
  14. Altun K., Barshan B., Tunçel O. Pattern Recognit., 2010, no. 10(43), pp. 3605–3620.
  15. Fong D.T.-P., Chan Y.-Y. Sensors, 2010, no. 12(10), pp. 11556–11565.
  16. Yang C.-C., Hsu Y.-L., Shih K.-S., Lu J.-M. Sensors, 2011, no. 8(11), pp. 7314–7326.